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Abstract

Clustered graphs are an enhanced graph model with a recursive clustering of

the vertices according to a given nesting relation. This prime technique for

expressing coherence of certain parts of the graph is used in many applications,

such as biochemical pathways and UML class diagrams. For directed clustered

graphs usually level drawings are used, leading to clustered level graphs. In this

thesis we analyze the interrelation of clusters and levels and their influence on

edge crossings and cluster/edge crossings.

We present a new method for the application of two-level crossing reduc-

tion algorithms to clustered level graphs. Our approach is optimal in the sense

that it does not introduce unnecessary crossings, and therefore produces fewer

crossings as previous results. In contrast to other approaches, our extension

scheme retains the optimality of a one-sided two-level crossing reduction algo-

rithm when extended to clustered level graphs.

We also give a new algorithm for constrained one-sided two-level crossing

reduction in level graphs, which appears as a subproblem in clustered crossing

reduction. Here, the relative position of some vertex pairs on the second level

is fixed. Based on the barycenter heuristic, we present a new algorithm that

runs in quadratic time and generates fewer crossings than existing simple ex-

tensions. It is significantly faster than previous advanced algorithms, while it

compares well in terms of crossing number and is easy to implement.

Minimizing crossings also leads to the concept of planarity. Planar draw-

ings are easy to understand and thus preferable to non-planar drawings. Vari-

ations of planarity have been studied intensively for level graphs and clustered

graphs. We combine these concepts and analyze a new problem: clustered level

planarity. We give an efficient algorithm that decides clustered level planarity

of elementary clustered level graphs and computes a clustered level embed-

ding, if one exists.
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It’s been said that a picture’s worth 1,000 words. Many
have said that the Chinese philosopher, Confucius said it
in 500 BC. But what kind of picture was Confucius talking
about? Probably a simple line drawing. And as it turns out,
in most word processing programs, 1,000 words is about
11K—equivalent to a simple line drawing. But when Holly-
wood digitizes a frame for a special effect, a single frame is
about a 40 Meg file. So, a picture today is worth about 25
million words!

Paul Martin Lester [152]

2
Introduction

“A picture is worth a thousand words.” This famous quote ascribed to the Chi-

nese philosopher Confucius may be even more true today, in the context of

huge and complex data sets in, e. g., physics, biology, and information technol-

ogy. Of course, analyzing the information content of data is not only a matter

of its size, but also of its structure. Complex sets are more difficult to under-

stand than simple ones, even if they are smaller. Though, if they are presented

in visual form, humans can recognize and understand them much more easily

than in textual or mathematical form. For example, the shortest path between

two street locations can be found fastest by using a street map, instead of a

list of street coordinates. The superiority of visualizations, however, is appar-

ently only given for good pictures. Bad visualizations can be confusing or even

misleading. For street maps, criteria for distinguishing “good” from “bad” visu-

alizations are easy to define. But in general the key problem is: What exactly is

a good picture? Obviously, a good picture must be clear and uncluttered to be

easily understandable. But what does this mean in mathematical terms? And,

even more important: How can such a picture be generated from given data?

In real applications, the answers to these questions depend on the intention

of the picture and on the form of the given data. Graph drawing considers data

that can be modeled as graphs with associated attributes. Examples are easy to

find, because nearly every finite data set that represents some kind of relations

between some objects can be modeled as a graph. Graph-like structures are

ubiquitous in information visualization: data flow diagrams, class hierarchies,

3



4 Chapter 2. Introduction

entity-relationship diagrams, Petri nets, state transition diagrams, PERT charts,

electronic circuits, file system hierarchies, and many more.

While graphs are well suited for displaying most categories of relational

data, very large and complex structures in real life applications cannot be rep-

resented appropriately by standard graphs. In these cases extended graph

models are used, such as clustered graphs or similar hierarchically structured

graphs. There are several advantages of such graph models. As the size and

complexity of data sets grow, it becomes more and more difficult to repre-

sent and visualize them in their entirety. Really large graphs, such as the

web graph, circuit diagrams, or biochemical pathways cannot be visualized as

a whole at once. Partial solutions for this problem are to show only a clip-

ping of the whole drawing, or to emphasize certain parts with fisheye views

[90, 99, 139, 143, 198]. These techniques, however, cannot satisfactorily give

a global overview of the graph, but only of local relations. Furthermore they

do not take into account additional structural information. A superior solution

is to exploit a hierarchical clustering structure of the graph, which is avail-

able in most applications. The graph is partitioned recursively into a hierarchy

of subgraphs. Then different views on the graph at different levels of detail

can be generated. This is particularly useful for interactive exploration of the

graph. Clusters of vertices can be expanded and contracted by the user, see

[29, 30, 184–186, 200]. There are various tools that support such navigation

techniques [1, 20–22, 64, 94, 96, 121, 143, 181, 214, 215].

As a second application, clustered graph models can also be used for the

visualization of graphs that are not necessarily large or complex, but where a

hierarchical structure represents important additional information. There are

many application areas for this type of clustered graphs, for example in sta-

tistics [106] or linguistics [7]. Another example for directed clustered graphs

are biochemical pathways, which directly motivated the research in this the-

sis. Leading to many new and interesting challenges for graph drawing, they

have attracted much attention recently [8, 20–24, 61, 94, 104, 136, 165, 200–

203, 209]. Biochemical pathways are reaction networks modeling parts of,

e. g., the human metabolism. They are usually represented by directed (hyper)

graphs consisting of vertices for the substances and directed (hyper) edges for

the reactions, see Figure 2.1. Parts of a reaction network take place in different

regions of the cell, e. g., in the nucleus or in the cytosol. These cell compart-

ments define different components (clusters) of the graph. This information

can be visualized by drawing boxes around related parts of the graph. In Fig-

ure 2.1(a), the boxes for the cytosol and the ER membrane make it evident which

reactions occur in these compartments. Due to nesting of cell compartments it

may also be necessary to nest the boxes. This leads to clustered graphs.
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(a) A part of the cholesterol biosynthesis [226]

(b) Metabolic specialization and cooperation between compartments [124]

Figure 2.1. Visualizations of clustered biochemical pathways
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As another application for directed clustered graphs consider class dia-

grams in the unified modeling language UML [192], which share similar require-

ments. Again, there is an underlying directed graph, consisting of vertices for

the classes and edges modeling inheritance and association. The classes are

grouped in boxes that declare the UML package they belong to. The boxes are

recursively nested in arbitrary depth. In Figure 2.2, which shows a simple UML

class diagram, it is immediately evident, which classes belong together. For

example, the position of the Cloneable class has been chosen so that it can be

drawn within the cluster for the java.lang package.

Figure 2.2. A UML diagram showing a part of the Java API [217]

Finally, clustered graphs also appear in declarative approaches to graph

drawing, such as in layout graph grammars and similar work [16, 17, 119, 153,

162, 163, 205, 206]. Layout graph grammars are a rule-based method for the

construction of graphs and graph drawings. They consist of an underlying con-

text free graph grammar and layout specifications attached to the productions.

Starting with a single vertex, successive application of productions to nonter-

minal vertices finally leads to a clustered graph. Here a cluster corresponds to

a nonterminal vertex and contains the subgraph that has been derived from it.

The clustered graphs that are constructed from a graph grammar are special,

because any production replaces a vertex by a constant number of new ver-

tices. Therefore the cluster tree in the resulting clustered graph is of bounded

degree. Because of this, several otherwise intractable problems can be solved

efficiently on such clustered graphs [119].
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The practical relevance of clustered graphs is stressed by the fact that all

well-known commercial graph drawing libraries include support for clustered

graphs or similar graph models, see Figure 2.3.

(a) Tom Sawyer Software [221] (b) ILOG [125]

(c) yWorks [236]

Figure 2.3. Nested drawings in commercial graph drawing

This thesis is structured as follows: The next chapter introduces some con-

cepts and definitions that are fundamental for all of the presented work. In

Chapter 4 we present clustered level graphs. These are special clustered graphs

where all vertices and edge bends are drawn on horizontal levels. Such draw-

ings are the de-facto standard for drawings of directed graphs. We will analyze

in detail the characteristics of edge crossings and cluster/edge crossings in

clustered level graphs. The minimization of edge crossings is one of the most

important aesthetic criteria for level drawings [182, 183].

The subsequent three chapters investigate specific algorithmic problems re-

lated to crossings in clustered level graphs: Chapter 5 addresses the crossing

reduction problem in clustered level graphs. For the solution of this problem,

an algorithm for constrained crossing reduction is needed, which is presented

in chapter 6. Chapter 7 investigates the problem of clustered level planarity,

i. e., whether drawings without any crossings are possible. Finally, we close

with a summary in Chapter 8.
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If you have built castles in the air, your work need not be
lost; that is where they should be. Now put the foundations
under them.

Henry David Thoreau

He who has not first laid his foundations may be able with
great ability to lay them afterwards, but they will be laid with
trouble to the architect and danger to the building.

Niccolo Machiavelli

3
Foundations

This chapter gives a brief introduction to graph drawing and to graphs in gen-

eral. It introduces the basic graph theoretical terms and concepts, and presents

the notation used in this thesis. A further overview of graph theory resp. graph

drawing algorithms can be found in [41, 43] resp. [55, 138, 213]. The proceed-

ings of the graph drawing symposiums [18, 52, 54, 142, 144, 156, 158, 172,

176, 179, 220, 233] may serve as a guideline for the ongoing research in the

field.

3.1 Graphs

Graphs are a general purpose data structure for the representation of binary

relational data. Depending on the application, there are various notations for

graphs. Since we only consider finite simple directed graphs, the following

standard definition for directed graphs without self loops or multiple parallel

edges is used:

Definition 3.1 (Graph). A (directed) graph G = (V , E) consists of a finite set of

vertices V and a finite set of directed edges E ⊆ { (u,v) ∈ V × V | u 6= v }.
There are many basic graph theoretical terms associated with graphs. The

following definition summarizes the most important concepts needed for the

descriptions in the following chapters. For a more detailed introduction to

graphs please refer to a book about graph theory, such as [41].

9



10 Chapter 3. Foundations

Definition 3.2 (Basic Graph Terms). Let G = (V , E) be a graph.

1. For an edge e = (u,v) ∈ E the vertices u and v are called source (vertex)

and target (vertex) of e, respectively, while e is called an outgoing edge of

u and an incoming edge of v . The vertices u and v are called adjacent to

each other and incident to e.

2. The direct predecessors and direct successors of a vertex v ∈ V are de-

fined as predG(v) = {u ∈ V | (u,v) ∈ E } and succG(v) = {u ∈ V |
(v,u) ∈ E }, respectively. The successors succ∗G(v) and predecessors

pred∗G(v) of v are the respective reflexive transitive closures. A source

of the graph is a vertex without predecessors, a sink is a vertex without

successors.

3. A path p = (v1, v2, . . . , vk) ∈ Vk is a sequence of vertices connected by

a sequence of edges: ∀i ∈ {1, . . . , k − 1} : (vi, vi+1) ∈ E. p is a cycle if

(vk, v1) ∈ E. G is acyclic, i. e., a directed acyclic graph (DAG), if it contains

no cycles.

4. An acyclic graph is a tree if it has a single source (its root) and each other

vertex has exactly one direct predecessor (its parent). In a tree, sinks are

also called leaves and the terms children, descendants, and ancestors are

used for direct successors, successors and predecessors, respectively.

5. A graph is strongly connected, if for every pair of vertices u,v ∈ V there

is a path from u to v . It is (weakly) connected, if its symmetric closure is

strongly connected.

6. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).
It is an induced subgraph of G if E′ = E ∩ (V ′ × V ′).

3.2 How to Draw a Graph

Before we investigate how a good drawing of a graph can be computed, it is

necessary to define what “good” means. Unfortunately, this is very hard to de-

fine. The quality of a drawing is very dependent on the semantics of the given

graph and on the intended purpose of the drawing. For instance, Figure 3.1

shows the same graph drawn in various ways. None of the drawings is inher-

ently better than the others since each of them emphasizes different properties

of the graph. In consequence, there are various graph drawing algorithms with

different results.



3.2. How to Draw a Graph 11

(a) 3D symmetries, uniform
edge length, no edge bends

(b) 2D symmetries, planar,
no edge bends

(c) Planar, orthogonal

(d) Bipartite, minimum area,
no edge bends

(e) Acyclic, uniform edge direction

Figure 3.1. The same graph drawn with different priorities

The classification of graph drawing algorithms is subject to several charac-

teristics, which can be put into three categories: drawing conventions, aesthetic

criteria and constraints. Every algorithm produces drawings according to its

drawing conventions, a basic set of rules that is observed by every generated

drawing, irrespective of the input graph. There are various drawing conven-

tions used by different graph drawing algorithms. The most simple kind of

drawings are straight-line drawings as in Figures 3.1(a), 3.1(b), and 3.1(d).

Definition 3.3 (Straight-Line Drawing). Let G = (V , E) be a graph. A (two-

dimensional) straight-line drawing of G is a function δ : V → R2 that assigns

coordinates to each vertex. The vertices are drawn as points in the plane (or as

some small geometric object) and are connected by the edges drawn as straight

lines.

Slightly more complex are polyline drawings, as those in Figures 3.1(c) and

3.1(e). They differ from straight-line drawings in the routing of the edges, which

are allowed to have a finite number of bends between multiple straight-line

segments:

Definition 3.4 (Polyline Drawing). Let G = (V , E) be a graph. A (two-dimen-

sional) polyline drawing δ = (δV , δE) of G consists of two functions δV : V → R2

and δE : V →
(
R2
)∗

that assign coordinates to each vertex resp. each edge bend.
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Within the bounds of the drawing conventions an algorithms tries to opti-

mize some aesthetic criteria of the drawing: small area, uniform edge length,

few edge bends and crossings, good spatial and angular resolution, and others.

These criteria typically are in conflict with each other, and thus different al-

gorithms prioritize differently. The most important aesthetic criterion for the

purpose of this work is the minimization of edge crossings. Empiric studies by

Purchase [182, 183] show that few edge crossings are very important for the

ease of human understanding.

Some algorithms also have the ability to observe drawing constraints. A

constraint is a given restriction for drawing a specific subgraph of the actual

input graph. For instance, an edge can be constrained to have a certain direc-

tion, or two vertices can be restricted to have the same x-coordinate. The set

of given constraints must be consistent with the drawing conventions, but they

may conflict with the aesthetic criteria. The objective is to compute a drawing

within the bounds of the drawing conventions that satisfies all constraints and

optimizes the aesthetic criteria.

3.3 Drawing Directed Acyclic Graphs

The basis of our considerations are drawings of directed acyclic graphs (DAGs),

one of the most important classes of graphs for applications. When drawing

directed graphs, it is often desirable to emphasize the orientation of the edges.

This applies particularly for acyclic graphs, because then it is possible to draw

all edges in the same general direction. This can be used to better visualize the

semantics of the orientation, for instance dependency in logic applications, a

main direction of flow, or the time line in scheduling applications.

Example 3.1 (University Course Dependencies). Consider a dependency graph

of courses given at some university. Each course is represented by a vertex, and

course prerequisites are connected by directed edges. The graph is acyclic, be-

cause cyclic dependencies would make it impossible to attend any of the involved

courses. The semantics of the dependencies imply that all edges should be drawn

in the same direction.

Figure 3.2 shows a small part of the dependency graph of computer science

courses at the University of Passau. Comparing two drawings of the same graph,

the drawing with uniform edge directions in Figure 3.2(b) clearly gives a better

overview. Even in this very small example, the overall relationship between ad-

vanced courses at the bottom and basic courses at the top is much more visible

than in Figure 3.2(a).
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(a) Varying edge directions (b) Uniform edge directions

Figure 3.2. Drawing directed acyclic graphs

The most common approach for drawing DAGs are level drawings, also

called layered drawings or hierarchical1 drawings. These are polyline drawings

with all vertices and edge bends arranged in horizontal levels and all edges ori-

ented downwards.2 Although there was some initial work on level drawings by

Warfield [230] and Carpano [31] before, this approach is commonly attributed

to Sugiyama et al. [216]. The Sugiyama algorithm is divided into four phases,

see Figure 3.3. Each of the phases is computationally hard and has been in-

tensively studied. We will present a short description of each phase and an

overview of the many heuristics and algorithmic variations that exist. For a

more detailed investigation see [6] and [55, chapter 9].

3.3.1 Cycle Removal

Although level drawings are primarily suited for drawing DAGs, they can also

be used for graphs that contain cycles. Of course, then it is not possible to

draw all edges downwards. In every drawing at least one edge of each cycle

points upwards. Even so, there are many applications, where graphs with cycles

should be drawn with a maximum number of edges being directed into the

same direction. Therefore the first step for a level drawing is to eliminate

1The term hierarchical is overloaded in graph drawing. A hierarchical drawing is different
from a hierarchical graph and also from a level graph that is a hierarchy. To avoid confusion
we will avoid using these terms where possible.

2By convention we always draw DAGs top down with the origin in the upper left corner
and coordinates growing down and rightwards. Of course this is equivalent to drawings in
other directions by a simple coordinate transformation.
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Figure 3.3. The phases of the Sugiyama algorithm

all cycles. This can be done by removing or alternatively by reversing some

edges. The latter is preferred, because the quality of the drawing decreases,

if some edges are entirely ignored throughout the algorithm. The adjacency

information represented by the removed edges is lost for the following phases

of the algorithm. Furthermore, removed edges are difficult to reinsert.

It is desirable to remove or reverse as few edges as possible. Finding a min-

imum set of edges whose removal makes the graph acyclic is known as the

feedback arc set problem, a well-known NP-hard problem [102, 137]. Although

edge removal and reversion are different problems, finding a minimum set of

edges whose reversal makes the graph acyclic is NP-hard as well [55]. Remov-

ing all edges makes any graph acyclic, but reversion of all edges only inverts

the direction of each cycle. However, the minimum solutions of the removal

problem are exactly the minimum solutions of the reversal problem and hence

the NP-hardness can be transferred.

Thus, efficient heuristics are used for the cycle removal problem. A simple

solution is to traverse the graph in depth first search (DFS) order and to reverse

all back edges and cross edges. This approach can lead to |E|−|V |+1 reversed

edges. A better and even simpler method is to arbitrarily order all vertices from

top to bottom and to reverse all edges that point upwards. If this reverses more

than half of the edges, the opposite direction is used for all edges, leading to

at most |E|2 reversed edges. A better quality, but also a considerably higher run-

ning time is achieved by computing the biconnected components of the graph

and iteratively removing edges in biconnected components until the graph is

acyclic. For more sophisticated algorithms see [6, 9, 55, 73, 74, 114, 134].
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3.3.2 Level Assignment

If the given graph G = (V , E) is a DAG, or after all cycles have been removed,

the vertex set V is partitioned into levels V1, . . . , Vk. All vertices of the same

level Vi are later drawn on the horizontal line li = { (x, i) | x ∈ R }. The level

number is identical to the y-coordinate of the vertex. The result of the level

assignment step is a level graph:

Definition 3.5 (Level Graph). A k-level graph G = (V , E,φ) is a graph (V , E)
with a leveling φ : V → {1, . . . , k} that partitions the vertex set into k disjoint

levels V1, . . . , Vk, Vi = φ−1(i), such that each edge (u,v) ∈ E has a positive span

φ(v) − φ(u) > 0, i. e., all edges point downwards. Edges are called proper if

their span is 1 and long span edges otherwise. G is proper if all its edges are

proper.

The quality of a leveling depends on various parameters. First it is desirable

that drawings are compact, i. e., that they have small height and width. Because

the level numbers are equivalent to the vertical coordinates of the vertices, the

height of a drawing is an immediate result of the number of levels. An obvious

lower bound for the number of levels is the length of the longest path in G.

The lower bound can be reached by the simple longest path leveling algorithm,

which is also called critical path method. All vertices without incoming edges

are placed on level 1, and are then removed from the input graph together with

their incident edges. All remaining vertices that now have no incoming edges

left are placed on level 2, then removed, and so on. This leads to a drawing of

minimum height, but ignores the width of the drawing.

Although the exact width is not defined until the last phase of the Sugiyama

algorithm, it mainly depends on the leveling, because levels with many vertices

need more horizontal space than sparse levels. With a uniform level distribu-

tion of the vertices, a smaller width can be expected. However, minimizing the

width of a minimum height leveling is NP-hard, as can be shown by a simple

reduction from the multiprocessor scheduling problem [102]. Therefore, many

heuristics have been developed, for instance the well-known Coffman Graham

heuristic, see [42].

For drawing proper level graphs, no edge bends are needed. For non-proper

level graphs a corresponding proper level graph is constructed by splitting long

span edges into a sequence of proper edges (edge segments):

(u,v) −→ (u = w0,w1), (w1,w2), . . . , (ws−1,ws = v).

New dummy vertices w1, . . . ,ws−1 with φ(wi) = φ(u) + i are introduced and

later replaced by edge bends, if necessary. It is desirable to introduce as few
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dummy vertices as possible for several reasons: In the worst case a quadratic

number of dummy vertices may have to be created, slowing down consider-

ably the later phases of the algorithm. Even more important, edge bends and

long span edges make the drawing more difficult to understand, because short

edges are much easier to follow visually. The bend minimization problem can

be solved in polynomial time by exact integer linear programming techniques

[100]. However, it becomes NP-hard again when simultaneously minimizing the

height of the drawing [154]. Recently, Eiglsperger, Siebenhaller and Kaufmann

[81] presented a new technique, how the Sugiyama algorithm can be imple-

mented without the explicit generation of dummy vertices.

In some applications the level assignment is already given by the semantics

of the data, as presented in the following example:

Example 3.2 (Given Leveling). In the university course dependency graph in Ex-

ample 3.1 each course is intended to be attended in a specific semester. It is

desirable to draw the courses of a semester on a single line and to partition

the vertices into levels according to the semester number, see Figure 3.4. Since

a course can only depend on courses in lower semesters, all edges point from

higher to lower levels and thus the graph is a k-level graph, where k is the ex-

pected number of needed semesters.

Figure 3.4. Dependencies of computer science courses at the University of
Passau

3.3.3 Crossing Reduction

In straight-line drawings of proper level graphs, edge crossings do not depend

on the exact coordinates of the source and target vertices, but only on their

relative positions. Because the vertical positions are fixed by the leveling, only

the ordering of the vertices on each level is significant. Therefore, given a level

graph, the next step is to compute these orderings, a so-called level embedding:
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Definition 3.6 (Level Embedding). Let G = (V , E,φ) be a proper level graph. A

level embedding3 π : V → N of G is a linear ordering of the vertices in each level

π(Vi) = {1, . . . , |Vi|}.

Two proper edges (u,v) and (u′, v′) starting on the same level φ(u) =
φ(u′) cross each other if and only if

(
π(u′)−π(u)

)
·
(
π(v′)−π(v)

)
< 0. To

compute drawings with few crossings, we are interested in level embeddings

with few crossings. In the optimal case there are no crossings at all, and the

drawing is planar:

Definition 3.7 (Level Planar Embedding). A level embedding is level planar if it

induces no edge crossings. A proper level graph is level planar if there exists a

level planar embedding of it.4

Crossings in level embeddings have been studied extensively for about 35

years, with first results from Harary, Schwenk, and Watkins [109, 110, 231]. Al-

though it can be tested in linear time, whether a level planar embedding exists

[129, 130], the problem of finding a level embedding with a minimum number

of edge crossings is NP-hard [103]. The common heuristic approach, first pro-

posed by Warfield [230], is to reduce the problem to successive applications

of the supposedly simpler one-sided two-level crossing minimization problem.

Starting with an arbitrary ordering of the first level, an ordering of the second

level is computed, minimizing the number of crossings between these two lev-

els. This step is repeated for each level in multiple top-down and bottom-up

level-by-level sweeps over the graph.

Although one-sided two-level crossing minimization is also NP-hard [78, 80],

it can be solved efficiently in many cases [126, 132, 133, 225]. For larger in-

stances, heuristics are applied, such as the barycenter [101, 216] and median

[79, 80, 100, 168] heuristics. The vertices are sorted by the barycenter or me-

dian of their predecessors’ positions, respectively. The barycenter is the aver-

age position of all direct predecessors

b(v) =
∑

u∈predG(v)

π(u)
|predG(v)|

,

while the median considers only the central direct predecessor(s). The median

heuristic misses the optimum by provably at most a factor of three [55]. The

barycenter heuristic, however, gives better experimental results. A better theo-

retical bound is obtained with a heuristic by Yamaguchi and Sugimoto [235].

3The term embedding is often used for planar embeddings only. Note that here a level
embedding is not necessarily planar.

4Level planar graphs have also been called h-planar graphs, e. g., in [63, 68, 69].
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The practical importance of the crossing reduction problem is stressed by

the large number of alternative heuristics that optimize running time and cross-

ing number in experimental results, such as greedy strategies [71, 167], sto-

chastic insertion [62], assignment heuristics [34, 35], and greedy randomized

adaptive search [145, 159, 160]. Other approaches initialize the algorithm by

first embedding only a part of the graph, like a depth first search tree [196], a

spanning tree [164] or a maximum planar subgraph [171, 218]. Furthermore,

several generic algorithmic concepts have been applied, like genetic algorithms

[169], tabu search [146] and sifting [105, 161]. There are also some variations

of the level sweep, such as sorting the vertices on a level according to both

adjacent levels [190], or by using two-sided two-level crossing minimization

[133, 204, 210], i. e., simultaneously optimizing two consecutive levels. With

Tutte’s Algorithm [77] the crossings on all levels can be minimized simultane-

ously, if a permutation of the first and last level are given.

An overview and experimental comparison of many heuristics can be found

in [132, 133, 160]. As a general rule, the results of the heuristics do not vary

very much for dense graphs, and thus the barycenter heuristic is often a good

and efficient choice. For sparse graphs the decision depends on the envisioned

running time. The barycenter heuristic then also gives good results, but there

are some heuristics with higher running time that outperform it significantly,

such as the greedy randomized adaptive search approach by Martí and Laguna

[145, 159, 160], and the exact branch-and-cut approach by Jünger and Mutzel

[133]. The time needed for counting the crossings also becomes significant

when using a fast heuristic. While a trivial implementation needs O(|E|2), there

are also more efficient algorithms [5, 228] with an optimal running time of

O(|E| + c), where c is the number of crossings.

A related problem, which is especially important for our investigations, is

the minimization of crossings with respect to given drawing constraints, i. e., if

for some vertex pairs (u,v) ∈ V 2 the vertex u must be positioned to the left of

the vertex v . The constraints can be given by the user or by an algorithm that

uses constrained crossing reduction as a subroutine, e. g., the minimization of

crossings for clustered level graphs. Heuristic solutions are given in [50, 51,

89, 196, 200, 227] and in Chapter 6.

3.3.4 Coordinate Assignment

The last step in drawing the graph is to replace all dummy vertices by edge

bends, and to assign coordinates to all vertices and edge bends. Finally, a level

drawing is generated:
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Definition 3.8 (Level Drawing). A level drawing of a DAG is a two-dimensional

polyline drawing where all vertices and edge bends lie on horizontal levels and

all edge segments point downwards.

Because the vertical positions are already fixed by the leveling, only the

horizontal coordinates remain to be computed. This is done by retaining the

ordering computed before, and optimizing several aesthetic criteria: The num-

ber of edge bends and the horizontal stretch of the edges are minimized while

the number of vertical edge segments is maximized. For a harmonic picture the

balancing of vertices subject to the incident edges is also important. The width

of the drawing is often given a lower priority than the number of edge bends

[25]. For level planar embeddings Eades et al. [68, 69] give an algorithm that

does not generate bends at all. However, the drawings may need exponential

area.

There are several algorithms for horizontal coordinate assignment [28, 75,

77, 95, 100, 101, 193, 194, 196, 197, 214, 216] using different approaches

for the optimization of various objective functions or iterative improvement

techniques. Most interesting is the algorithm of Brandes and Köpf [25], which

generates at most two bends per edge if no two inner segments cross each

other. It also gives good results for the other aesthetic criteria. The algorithm

has a linear running time and is also very fast in practice.

3.4 Drawing Clustered Graphs

3.4.1 Clustering in Graphs

Clustering is a widely used technique for the reduction of complexity or for

the representation of hierarchical structures. In graphs, there are two main

approaches to clustering: vertex clustering and edge clustering. Edge clustering

is used, for example by Schreiber [200], who describes a navigation technique in

biochemical pathways that represents subgraphs (“pathways”) by edges. Other

techniques like edge concentration [155, 174, 180], factoring [36], or graph

compression [85] replace complete subgraphs or complete bipartite subgraphs

by single vertices that represent the edges. Recently this approach has also

been used to reduce the number of crossings in so-called confluent drawings

[60, 82, 122].

Motivated by the applications mentioned in Chapter 2, however, the main

focus of this thesis is on vertex clustering. There are various extended graph

models for representing the grouping of vertices such as clustered graphs [67–

69, 86–88], statecharts [32, 33, 111], higraphs [112], cigraphs [147], hierar-
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chical graphs [150, 151], compound graphs [214], (layout) graph grammars

[16, 17, 119], and clan-based graph decompositions [162, 163, 205, 206]. See

also [26] for an overview. All of these approaches have in common that sub-

sets of vertices are grouped together to form a hierarchical clustering of the

graph. They differ in particular features, such as whether clusters are allowed

to overlap, whether edges can be drawn between clusters, and in which way

vertices are grouped together. Such features improve the expressiveness of the

drawings, but they also increase their complexity. The more features the graph

model has, the more difficult it is to handle. Additional features have to be

considered in all definitions, theorems and algorithms. Therefore, we choose

a comparatively simple, yet powerful graph model: directed clustered graphs

[67–69, 86–88], see Figure 3.5.

(a) A drawing of G (b) The cluster tree Γ = (V ∪ C, I)
Figure 3.5. A clustered graph G = (V , E,C, I)

Clustered graphs represent a recursive vertex clustering of arbitrary finite

depth. The vertices are the leaves of an inclusion relation that is required to

form a tree, i. e., clusters do not overlap. Edges are only allowed to connect

vertices but not clusters. To a certain extent, more complex features of other

clustered graph models can be emulated in clustered graphs, see Figure 3.6. Us-

ing these replacements and techniques like drawing constraints, graph drawing

algorithms can generate drawings that are similar to those of more complex

graph models. Figure 3.7 shows a rather complex statechart and how it can

be represented as a clustered graph. Formally, clustered graphs are defined as

follows:

Definition 3.9 (Clustered Graph). A clustered graph G = (V , E,C, I) consists

of an underlying graph (V , E), clusters C , and a recursive inclusion relation I.
I builds a rooted tree Γ = (V ∪ C, I) with the clusters C as inner nodes and the

vertices V as leaves, such that each cluster has at least two children. Γ is called

the cluster tree of G.
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(a) Edges ending at a cluster . . . (b) . . . end at a dummy vertex, instead

(c) Components in clusters . . . (d) . . . are replaced with nested clusters

(e) Overlapping clusters . . . (f) . . . are divided into multiple clusters

Figure 3.6. Modeling advanced clustering techniques with clustered graphs

If in an application clusters with only a single child occur, a preprocessing

step is used to combine sequences of these clusters into a single cluster. Then

the number of clusters |C| is linear in the number of vertices |V |. Consider

Figure 3.5 for a drawing of a clustered graph and an illustration of its cluster

tree. Each cluster c ∈ C induces a subgraph Gc = (Vc, Ec) of G. The vertices

Vc ⊆ V of this subgraph are the leaves of the cluster tree Γ = (V ∪C, I) that are

reachable from c.

Definition 3.10 (Contained Vertices). Let c ∈ C be a cluster of a clustered graph

G = (V , E,C, I). A vertex v ∈ V is contained in c if it is a descendant of c in the

cluster tree. The set of vertices contained in c is denoted by Vc = succ∗Γ (c) ∩ V .

These are the leaves of the subtree rooted at c.

Example 3.3. In Figure 3.5 the root cluster c1 contains all vertices of the graph

(Vc1 = V ) while c2 contains only its children: Vc2 = {3,4}. The cluster c4 is

nested within c3, and thus its set of contained vertices Vc4 = {5,6} is a subset of

Vc3 = {5,6,7,8}.
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(a) A complex statechart [111] . . .

(b) . . . and its abstraction as a clustered graph

Figure 3.7. Modeling statecharts with clustered graphs
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3.4.2 Drawing Conventions

Clustered graphs can be drawn in various ways. Firstly, a clustered graph con-

sists internally of two graphs, the underlying graph and the cluster tree. Thus

different drawing styles have two choices for their main focus. It would be pos-

sible to generate a drawing of the cluster tree with a tree drawing algorithm

[27, 123, 188, 232], and to connect the leaves with the edges of the underly-

ing graph. This way, the inclusion relation is very evident, but the drawing of

the underlying graph is a linear arrangement of the vertices, and thus not well

readable.

Eades and Feng [67] present a three-dimensional drawing style for clustered

level graphs that uses two dimensions for drawing the underlying graph, and

the third dimension for drawing the cluster tree, see Figure 3.8. In these so-

called multilevel drawings of clustered graphs both the cluster tree and the

underlying graph are reasonably visible.

Most drawing algorithms for clustered graphs, however, primarily empha-

size the underlying graph and draw the cluster tree as nested regions, similar to

the nested box inclusion diagrams of Eades, Lin and Lin [72], see Figure 3.5(a).

The edges of the cluster tree are not drawn at all, but they are only represented

by the nesting of the clusters. The clusters are drawn as simple closed curves

that define closed regions of the plane. The region of a cluster contains ex-

actly the clustered drawing of the subgraph induced by its vertices. Regions

are nested recursively according to the cluster tree.

Nearly all drawing algorithms for clustered graphs use convex shapes for

the cluster regions. The cluster regions should be as simple as possible to

improve the readability. If the shape of a cluster region is to complex it is

difficult so see which vertices are contained in the cluster and which are not.

Thus convex regions like circles or rectangles are preferred. Because we will

later combine clustered drawings and level drawings, we use rectangles, which

visually match well with the horizontal level lines. This is no strong restriction

on the drawings. For example, Eades, Feng and Lin [69] have shown that every

clustered planar graph admits a planar straight-line drawing with rectangular

cluster regions. See also Section 7.1.4.

Definition 3.11 (Clustered Drawing). Let G = (V , E,C, I) be a clustered graph.

A (nested) clustered drawing δ = (δV , δE, δC) of G consists of a two-dimensional

polyline drawing (δV , δE) of the graph (V , E) and a function δC : C → P(R) such

that:

• The drawing δC(c) of a cluster c ∈ C is an axially parallel rectangle with

non-zero area.
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Figure 3.8. A multilevel drawing of the graph in Figure 3.5
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• The drawing of each vertex v ∈ V is contained within the drawing of its

parent cluster c ∈ C : δV(v) ∈ δC(c).

• The drawing of each non-root cluster c ∈ C is completely contained within

the drawing of its parent cluster c′: δC(c) ⊆ δC(′)

• If two clusters c and c′ are not are not related, i. e., none of them is a

descendant of the other one, then their drawings do not overlap: δC(c) ∩
δC(c′) = ∅.

All major techniques for drawing graphs have been extended to nested clus-

tered graphs. There are algorithms for computing planar drawings [65, 66, 68,

69, 87, 173], level drawings [32, 33, 177, 195–197, 214], and also force directed

methods for clustered graphs [3, 61, 70]. The choice of the right algorithm for

drawing a clustered graph depends on the same reasons as for graphs. The

applications that motivated this thesis use directed graphs, and the direction

is also very important to be visible in these drawings. In biochemical pathways,

there is the time line of reactions, and UML diagrams contain the class hierar-

chy, which should be drawn top down. In many other applications of clustered

graphs the underlying graph is also directed. In these cases, level drawings

are the best choice for a visualization, since these are the only drawings that

guarantee the same direction for all edges, if possible. We will see in the next

chapter, how level graphs and clustered graphs are combined to clustered level

graphs.
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There are two ways of constructing a software design; one
way is to make it so simple that there are obviously no de-
ficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is
far more difficult.

C. A. R. Hoare

4
Clustered Level Graphs

The main focus of this thesis is on level drawings of directed clustered graphs.

Level drawings are well suited for the visualization of directed graphs, because

they explicitly emphasize the direction of the edges by letting them point into

a uniform direction. The main aesthetic criterion for level graphs is the min-

imization of edge crossings. Few edge crossings are very important for un-

derstandable drawings [182, 183]. Thus the principal topic of the following

chapters is the minimization or total prevention of crossings in level drawings

of clustered graphs. We will present algorithms for minimizing edge cross-

ings, and for testing whether a drawing without any crossings is possible. In

this chapter we start with a detailed analysis, how the concepts of leveling and

clustering are combined, and how this is related to crossings.

4.1 Previous Results

Previously, there have been two main concepts for combining leveling and clus-

tering. Sugiyama and Misue [214] present an algorithm for drawing compound

graphs on horizontal levels. Compound graphs are a generalization of clus-

tered graphs that also allow edges between two clusters or between a cluster

and a vertex. A similar algorithm is proposed by Sander [195–197]. Both al-

gorithms extend the classical level drawing algorithm of Sugiyama, Tagawa,

and Toda [216]. The vertices are drawn on horizontal levels, and the clusters

27
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are drawn as nested rectangles. After partitioning the vertices into levels, per-

mutations of each level are computed for minimizing edge crossings. Finally,

horizontal coordinates are assigned to the vertices and clusters.

The main difference between the two algorithms is the leveling. In the al-

gorithm of Sugiyama and Misue each vertex and each cluster spans exactly one

level. Levels are nested according to the nesting of the clusters. The label

of a level does not consist of a single number, but of a sequence of numbers

that specifies the nesting of the level. For example in Figure 4.1(a) the levels

(1,2,1) and (1,2,2) are nested within level (1,2). If a cluster is drawn on level

(a1, . . . , aq), q ∈ N, then all its children are drawn on the levels (a1, . . . , aq,1)
to (a1, . . . , aq, p), p ∈ N. A cluster c is nested within a cluster c′ if and only if

the level label of c′ is a prefix of the level label of c. The subgraph contained

within a cluster is drawn on the levels that are nested within the level of the

cluster. In this drawing convention, the leveling is called a local leveling. It is a

main property of a local leveling that clusters on different levels are not allowed

to overlap vertically, even if their horizontal range is disjoint. For example in

Figure 4.1(a), the clusters c2 and c5 are on the different levels (1,1) and (1,2),

respectively. These levels have a disjoint vertical range, because they are not

nested. Therefore c2 and c5 cannot share common y-coordinates. The inten-

tion of this partitioning of vertical space is the prevention of cluster overlap. In

the crossing reduction step and in the coordinate assignment step no care has

to be taken against overlaps of clusters on different levels.

(a) Local leveling (b) Global leveling

Figure 4.1. Different leveling concepts

Sander’s algorithm uses a different drawing convention: In the computed

drawings there is one plain set of levels for all vertices and clusters. The levels

are not nested, and they are numbered 1, . . . , k. Each vertex is assigned exactly

one level, but clusters are allowed to span multiple levels. Accordingly, this is
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called a global leveling. See Figure 4.1(b) for an example. In a global leveling it

is possible that two clusters have a different but overlapping set of levels. For

example the cluster c2 is on the levels {1,2,3}, and cluster c5 is on the levels

{3,4}. Both clusters span level 3, i. e., in contrast to local levelings, vertical

overlap is possible. This typically results in more compact drawings than with

a local leveling. Figure 4.2(a) shows a drawing generated by the algorithm of

Sugiyama and Misue. The used leveling clearly can be vertically compacted.

Figure 4.2(b) shows the same graph drawn with a global leveling. The large

clusters are now allowed to vertically overlap, which leads to a much smaller

area. Also the vertices are more uniformly distributed. Because of this, we con-

sider global levelings as superior to local levelings. However, global levelings

are often computationally more expensive than local levelings, because more

crossings between edges and level lines have to be represented by dummy ver-

tices.

(a) Local leveling (b) Global leveling

Figure 4.2. Comparing the compactness of different leveling concepts

There is also an algorithm for level drawings of clustered graphs by Eades,

Feng and Lin [69], which draws edges as straight lines, but generates drawings

with up to exponential area. The leveling used by this algorithm gives each

vertex its own level, such that the vertices of a cluster are on consecutive levels,

see Figure 4.3. Clusters do not overlap vertically, so this very similar to a local

leveling, while formally, it is a global leveling.
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Figure 4.3. Straight-line drawings by Eades, Feng, and Lin [69]

4.2 Definitions and Basic Properties

Because of the more compact drawings and the better vertex distribution, from

now on we focus on global levelings. A clustered graph with a global leveling is

called a clustered level graph and is defined as follows:

Definition 4.1 (Clustered Level Graph). A clustered k-level graph G = (V , E,C,
I,φ) is a k-level graph (V , E,φ) with a cluster tree Γ = (V .

∪ C, I), V ∩ C = ∅.

In this definition only the vertices are assigned to levels. The levels of the

clusters result directly from the levels of the contained vertices and clusters.

A cluster starts on the minimum level of a contained vertex and ends at the

maximum level.

Definition 4.2 (Minimum/Maximum Level). In a clustered k-level graph G =
(V , E,C, I,φ), the minimum level φmin(c) and the maximum level φmax(c) of a

cluster c ∈ C are defined as the minimum and maximum level of its contained

vertices, respectively:

φmin(c) = min
v∈Vc

φ(v) φmax(c) =max
v∈Vc

φ(v).

The cluster c is said to span the levels between φmin(c) and φmax(c). The set of

spanned levels is denoted by

Φ(c) = { i ∈ N | φmin(c) ≤ i ≤ φmax(c) }

For a vertex v ∈ V the minimum and maximum level are defined as φmin(v) =
φmax(v) = φ(v), Φ(v) = {φ(v)}.
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4.2.1 Proper Clustered Level Graphs

After computing a leveling for a clustered graph, some edges may span more

than one level. This is analogous to drawings of level graphs, see Section 3.3.2.

Before in the next step edge crossings can be minimized, long span edges must

be split into segments that span only a single level. This is necessary, because

otherwise the exact routing of the edges cannot be defined. At each crossing

between a level line and an edge it may be necessary to introduce an edge bend.

These bends are represented by dummy vertices.

In a clustered level graph not only edges can span multiple levels, but also

clusters. Because of this, dummy vertices are not only needed for the edges,

but also for the clusters. As long as a cluster contains a vertex on each spanned

level, the “routing” of its region is well defined. But it is also possible that a

cluster in a clustered level graph spans a level on which it does not contain

any vertex. This can lead to problems, because on such a level the exact region

of the cluster is not defined, and it may be unclear if a cluster is crossed by

edges or by other clusters, see Figure 4.4(a). Figures 4.4(b) and 4.4(c) show

two drawings of the same graph. Although the relative position of the original

vertices on each level has not been changed, two clusters cross in one of the

drawings but not in the other. These problems are very similar to long span

edges. While long span edges are split into proper edge segments, we require

clusters to contain a vertex on each spanned level. In analogy to proper level

graphs, we call this a proper clustered level graph:

Definition 4.3 (Proper Clustered Level Graph). A clustered k-level graph G =
(V , E,C, I,φ) is proper if all edges are proper and each cluster c ∈ C contains a

vertex on any spanned level: ∀i ∈ Φ(c) : Vc ∩ Vi 6= ∅.

(a) Unknown cluster crossings (b) With a cluster crossing (c) Without a cluster crossing

Figure 4.4. In non-proper graphs the region of clusters is not fully defined
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From now on, we will only consider proper clustered level graphs. Any

clustered level graph can be made proper by introducing dummy vertices for

long span edges and for clusters with empty levels. In contrast to level graphs

there may be several alternatives for making an edge of a clustered level graph

proper. In particular, there is typically more than one choice for the parent of

the dummy vertices in the cluster tree, see Figure 4.5. For a readable drawing,

long span edges should enter or leave a cluster at most once, and they should

not touch unrelated clusters. Therefore the parents of the dummy vertices

should follow a simple path in the cluster tree. Different strategies lead to a

trade-off between symmetry and the number of dummy vertices. Routing the

edges outside of a cluster may lead to an overall higher number of dummy

vertices, as shown in Figure 4.5(c), but the routing is more symmetric. Such a

routing is generated by inserting the dummy vertices for a long span edge (s, t)
as children of the lowest common ancestor of s and t in the cluster tree. For

our purposes any strategy for inserting the dummy vertices can be chosen, as

long as no edge enters or leaves a cluster twice.

(a) A clustered level graph (b) Changing clusters lazily

(c) Lowest common ancestor (d) Mixed strategy

Figure 4.5. Making a clustered level graph proper
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For the dummy vertices that are inserted for clusters there is no such choice.

For each empty spanned level a dummy vertex is introduced as a direct child

of the cluster. A dummy vertex is not necessary, however, if on the same

level another dummy vertex has already been inserted into the cluster for a

nested long span edge or cluster. Because of this, fewer dummy vertices are

generated by first considering long span edges, and then traversing the cluster

tree bottom up for inserting dummy vertices for the clusters.

It is clear that making a clustered level graph proper requires up to a quad-

ratic number of dummy vertices, because for each crossing between a level line

and a cluster or a long span edge, a dummy vertex may have to be inserted. This

is analogous to level graphs and increases the running time of the remaining

parts of the algorithm. Therefore the number of dummy vertices should be

taken into account when computing the leveling. Here, an extended version of

the dummy vertex minimization algorithm by Gansner et al. [100] can be used.

4.2.2 Level Cluster Trees

The leveling and clustering of a graph are in a sense orthogonal concepts. Since

the layout of a graph is constrained by both, we want to analyse where the

different restrictions influence each other. The ordering of the vertices on a

single level is constrained by the clustering, but not the whole cluster tree is

relevant for all levels. Therefore, we introduce the level cluster tree, which is

that part of the cluster tree that is relevant for a given level. We will see later

that thoughtfully ordering the children of clusters in the level cluster tree leads

to drawings with few crossings.

Definition 4.4 (Level Cluster Tree). Let Γ = (V ∪ C, I) be the cluster tree of a

clustered k-level graph G = (V , E,C, I,φ). The i-th level cluster tree Γi is the

subgraph of Γ induced by all vertices and clusters x ∈ V ∪ C spanning the i-th
level, i ∈ Φ(x).

For example, the clustered level graph in Figure 4.6(a) has the cluster tree

shown in Figure 4.6(b). Since there are two levels, there are also two level cluster

trees, one for each level, see Figures 4.6(c) and 4.6(e).

As this example shows, the level cluster trees may contain clusters with

a single child, such as cluster B in Γ1. This implies that the size of a level

cluster tree may be greater than linear in the size of the level. Actually, the

accumulated size of the level cluster trees can be quadratic in the number of

vertices. Each intersection of a cluster with a level line leads to a new node

in the corresponding level cluster tree. Figure 4.7 shows how clustered level

graphs can be constructed with Ω(|V |) clusters that span Ω(|V |) levels, each.
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(a) G (b) Γ

(c) Γ1 (d) ∆1 (e) Γ2 (f) ∆2

Figure 4.6. Defining level cluster trees

Figure 4.7. A clustered level graph where all clusters span all levels
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Also, single-childed clusters do not carry much information, because there

is only one permutation of the single child. So we further reduce the size of the

level cluster tree by eliminating single-childed clusters:

Definition 4.5 (Contracted Level Cluster Tree). Let Γi be the i-th level cluster

tree of a clustered k-level graph. The i-th contracted level cluster tree ∆i is con-

structed from Γi by removing each single-childed cluster and connecting the child

directly to the grandparent. If no grandparent exists (at the root), no connection

is made.

The contracted level cluster trees are significantly smaller than the full level

cluster trees. While the overall size of the level cluster trees can be quadratic,

the size of the contracted level cluster trees is linear, as the following lemma

shows:

Lemma 4.1. Let G be a clustered k-level graph. Then the accumulated size of

the contracted level cluster trees (∆i)1≤i≤k is linear in the size of G.

Proof. In a contracted level cluster tree every inner node has at least two chil-

dren. Thus, its size is smaller than twice the number of leaves, |∆i| < 2 · |Vi|,
and the correctness follows immediately:∑

1≤i≤k
|∆i| < ∑

1≤i≤k
2 · |Vi| = 2 · |V |.

�

The sequence of contracted level cluster trees can be constructed easily by

pruning the level cluster trees. An alternative is to traverse the cluster tree bot-

tom up and to simultaneously insert each vertex or cluster in the corresponding

contracted level tree(s). Both approaches lead to quadratic time algorithms. Al-

though both the cluster tree and the sequence of contracted level cluster trees

are linear in the number of vertices, no linear time algorithm is known, yet.

4.3 Drawing Conventions

Drawings of clustered level graphs are the straight-forward combination of

level drawings and clustered drawings. As in level graphs, vertices and edge

bends are drawn on horizontal levels, and the clusters are nested as in clus-

tered graphs:

Definition 4.6 (Clustered Level Drawing). Let G = (V , E,C, I,φ) be a clustered

level graph. A clustered drawing δ = (δV , δE, δC) of (V , E,C, I) is a clustered

level drawing of G if (δV , δE) is a level drawing of (V , E,φ).
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It is not necessarily clear, whether this definition is well-formed. Draw-

ings of clustered level graphs have been defined as drawings with rectangular

cluster regions. So this definition requires rectangular cluster regions as well.

These are desirable for readable drawings, but they also restrict the number

of possible drawings. As we will see, however, for any leveling of a clustered

level graph there is a clustered level drawing. Also, as already mentioned in

Section 3.4.2, every clustered planar graph admits a planar straight-line draw-

ing with rectangular cluster regions. This is also true for clustered level graphs

[69], so the restrictions imposed by rectangular clusters are manageable. They

may, however, increase the number of crossings or edge bends.

Before drawing a clustered level graph, an embedding must be computed.

An embedding of a clustered level graph is very similar to a level embedding

of the underlying level graph, but there are some additional restrictions for the

clusters. For some vertex permutations, it is not possible to draw the graph

without overlapping clusters. In the following we will analyze these restric-

tions in detail. We will also analyze how the embedding affects edge crossings

and cluster/edge crossings. This leads to four different restrictions for the

underlying level embedding, which we will define and analyze in the rest of

this chapter, see Table 4.1 on page 47. We will show that a valid clustered level

embedding can be characterized by the cluster/level and cluster/cluster restric-

tions. If additionally the edge/edge and cluster/edge restrictions are satisfied,

then there are no crossings.

As the embedding defines the relative position of the vertices on a level,

it also determines the shape of the clusters and whether they overlap or not.

In the same way as the leveling determines the vertical range of a cluster, the

embedding defines its horizontal ranges. In analogy to the definition of the

minimum and maximum level of a cluster subject to the levels of the contained

vertices, an embedding defines the minimum and maximum level position of a

cluster subject to the level positions of the contained vertices:

Definition 4.7 (Minimum/Maximum Level Position). Let G = (V , E,C, I,φ) be

a clustered level graph and π a level embedding of (V , E,φ). The minimum

resp. maximum position of a cluster c ∈ C on level i is defined by

πmin(c, i) = min
v∈Vc∩Vi

π(v) , πmax(c, i) = max
v∈Vc∩Vi

π(v) .

The horizontal range of a cluster is denoted by

Π(c, i) = { j ∈ N | πmin(c, i) ≤ j and j ≤ πmax(c, i) } .

If Vc ∩ Vi = ∅, then πmin(c, i) = ∞, πmax(c, i) = −∞, and Π(c, i) = ∅.
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Per definition the relative position of every vertex is within the range of an

enclosing cluster and the range of a cluster is nested within the range of any

ancestor. For a valid clustered drawing with rectangular cluster regions the

reverse direction must also be true:

Definition 4.8 (Cluster/Level Restriction). Let G = (V , E,C, I,φ) be a clustered

level graph. A level embedding π of (V , E,φ) satisfies the cluster/level restric-

tion if the horizontal range of any cluster c ∈ C includes only contained vertices:

∀v 6∈ Vc : π(v) 6∈ Π(c,φ(v)).
Example 4.1. Figure 4.8 shows two level embeddings of the same clustered level

graph. In the first level embedding the cluster/level restriction is violated, be-

cause the level position of vertex v is within the horizontal range of the cluster.

In the second embedding the cluster/level restriction is satisfied, and a cluster

drawing with rectangular clusters is possible.

(a) The restriction is violated:
π(v) = 2 ∈ {1,2,3} = Π(c,1). (b) The restriction is satisfied:

π(v) = 3 6∈ {1,2} = Π(c,1).
Figure 4.8. The cluster/level restriction

While the cluster/level restriction assures that clusters can be drawn as rec-

tangles and avoids overlap of clusters on a single level, two clusters with more

than one common level may still overlap. This leads to a second condition that

is necessary for the existence of a clustered level drawing, which deals with the

interference of clusters across multiple levels:

Definition 4.9 (Cluster/Cluster Restriction). Let G = (V , E,C, I,φ) be a proper

clustered level graph. A level embedding π of (V , E,φ) satisfies the cluster/clus-

ter restriction if for any two clusters c1, c2 ∈ C that are not nested, c1 lies to the

left of c2,

∀i ∈ Φ(c1)∩ Φ(c2) : πmax(c1, i) < πmin(c2, i) ,

or c2 lies to the left of c1,

∀i ∈ Φ(c1)∩ Φ(c2) : πmax(c2, i) < πmin(c1, i) .
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Example 4.2. Figure 4.9 shows two level embeddings of the same clustered level

graph. In the first level embedding the cluster/cluster restriction is violated,

because the order of the clusters on level 1 is different to the order on level 2.

In the second embedding the cluster/cluster restriction is satisfied and a cluster

drawing with disjoint cluster regions is possible.

(a) The restriction is violated. (b) The restriction is satisfied.

Figure 4.9. The cluster/cluster restriction

While the necessity of the cluster/level and cluster/cluster restrictions is

obvious, the following lemma shows that both restrictions together are also

a sufficient condition and therefore a characterization for the existence of a

rectangular clustered drawing. Such a drawing can be generated by using the

algorithm of Sander [195–197]. For proving the following lemma, however,

we use a much more simple algorithm, which ignores most aesthetic criteria.

It needs quadratic area, which is optimal. Clustered level graphs like that in

Figure 4.7 cannot be drawn with rectangular clusters on less than quadratic

area.

Lemma 4.2. For any level embedding of a clustered level graph that satisfies the

cluster/level and cluster/cluster restrictions there is a clustered level drawing

with rectangular cluster regions.

Proof. Consider a clustered level graph G = (V , E,C, I,φ) with a level em-

bedding π that satisfies the cluster/level and cluster/cluster restrictions. We

describe a simple algorithm that generates a clustered drawing with rectangu-

lar cluster regions: The vertical coordinates of the drawing are given by the

leveling. Horizontal coordinates are computed as follows: For the children of

the root r of the cluster tree Γ , the “is left of” graph G′ = (V ′, E′) is defined as:

V ′ = succΓ (r) ,
E′ = { (u,v) ∈ V ′ × V ′ | ∃i : πmax(u, i) < πmin(v, i) } .

Because of the cluster/cluster restriction, G′ is acyclic, and a linear arrange-

ment of V ′ can be found by topological sorting. The topsort numbers are used
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as horizontal coordinates for these vertices and clusters. Clusters are assigned

a width of 1
2 . Then any two clusters have disjoint horizontal ranges, and there-

fore do not overlap. Because of the cluster/level restriction, the contents of a

cluster can be drawn independently and then scaled down to fit into the region

of the enclosing cluster. The cluster tree is traversed top down and the children

of each cluster c are drawn into the region of c as described above. �

Now that we have seen, that any embedding that satisfies the cluster/lev-

el and cluster/cluster restrictions can be drawn with rectangular clusters, it

remains to show, that such embeddings exist.

Lemma 4.3. For any clustered level graph there is an embedding that simulta-

neously satisfies the cluster/level restriction and the cluster/cluster restriction.

Proof. Let G = (V , E,C, I,φ) be a clustered level graph. A suitable embedding

for G is constructed using a preorder1 traversal of the cluster tree. Every cluster

and vertex is assigned a preorder number p(v). Then the vertices on each level

are sorted by p(v). This defines an embedding π such that π(u) < π(v) if and

only if p(u) < p(v). In the preorder traversal every vertex that is not contained

in a cluster c is traversed either before or after all vertices in c. Thus, π satisfies

the cluster/level restriction. It satisfies the cluster/cluster restriction, because

the preorder traversal is independent of the levels. Therefore, if two clusters

c1 and c2 are not nested, all vertices contained in c1 have smaller preorder

numbers than all vertices in c2 or vice versa. �

In summary, rectangular clustered drawings are possible if and only if the

above restrictions are satisfied, and such embeddings always exist. This jus-

tifies the following definition, which requires a clustered level embedding to

satisfy the restrictions:

Definition 4.10 (Clustered Level Embedding). Let G = (V , E,C, I,φ) be a prop-

er clustered level graph. A level embedding π of (V , E,φ) is a clustered level

embedding of G if it satisfies the cluster/level and cluster/cluster restrictions.

4.4 Characterizing Crossings

Up to now, we have only considered vertices and clusters, and have ignored

the edges. Because crossings decrease the readability of a drawing, we obvi-

ously cannot ignore the edges when computing an embedding. In clustered

level graphs, there are two kinds of crossings: edge crossings and cluster/edge

crossings.

1Because the algorithm is irrespective of the numbers assigned to clusters, a postorder
traversal can be used as well.
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4.4.1 Edge Crossings

Edge crossings in clustered level graphs are very similar to edge crossings in

level graphs, see Section. 3.3.3. Embeddings that do not induce edge crossings

are characterized by the following restriction:

Definition 4.11 (Edge/Edge Restriction). A clustered level embedding π for a

proper clustered level graph G = (V , E,C, I,φ) satisfies the edge/edge restric-

tion if there are no edge crossings, i. e., if there is no pair of edges (u,v) ∈ E
and (u′, v′) ∈ E with φ(u) = φ(u′) and

(
π(u′)−π(u)

)
·
(
π(v′)−π(v)

)
< 0.

Example 4.3. Figure 4.10(a) shows a (clustered) level embedding that violates

the edge/edge restriction, because the vertices u′ and v′ have a different relative

order than the vertices u and v . Figure 4.10(b) shows an embedding of the same

graph with the restriction satisfied.

(a) The restriction is
violated.

(b) The restriction is
satisfied.

(c) A (clustered) level
graph without a sat-
isfying embedding.

Figure 4.10. The edge/edge restriction

Minimizing crossings is a computationally hard problem. First, we observe

that not every (clustered) level graph has an embedding without crossings, see

Figure 4.10(c). Further, we know from level graphs that minimizing the number

of crossings in a level embedding is NP-hard [102]. This is also true for clus-

tered level graphs, because per definition every level graph is also a clustered

level graph.2

4.4.2 Cluster/Edge Crossings

In addition to edges crossing each other, we also want to avoid edges crossing a

cluster, i. e., edges that cross the boundary of a cluster region more than once.

If cluster regions are rectangular, this can be enforced by a simple restriction:

2Formally, every level graph G = (V , E,φ) has a corresponding clustered level graph G′ =
(V , E,C, I,φ) with a single cluster C = {c} that contains all vertices I = { (c, v) | v ∈ V }.
This is only a notational difference, however.



4.4. Characterizing Crossings 41

Definition 4.12 (Cluster/Edge Restriction). Let G = (V , E,C, I,φ) be a proper

clustered level graph. In a clustered level embedding π of G, an edge e =
(u,v) ∈ E crosses a cluster c ∈ C if φ(u) ≥ φmin(c) and φ(v) ≤ φmax(c)
and

π(u) > πmax(c,φ(u))∧π(v) < πmin(c,φ(v))

or

π(u) < πmin(c,φ(u))∧π(v) > πmax(c,φ(v)) .

π satisfies the cluster/edge restriction if there are no cluster/edge crossings.

Example 4.4. Figure 4.11(a) shows a clustered level embedding that violates the

cluster/edge restriction, because vertex u is on the other side of the cluster than

v . Figure 4.11(b) shows an embedding of the same graph with the restriction

satisfied.

(a) The restriction is violated. (b) The restriction is satisfied.

(c) A clustered level graph without
a satisfying embedding.

Figure 4.11. The cluster/edge restriction

Similar to the edge/edge restriction, the cluster/edge restriction cannot be

satisfied for all clustered level graphs. The graph in Figure 4.11(c) has no such

embedding. Because there is an edge between any pair of clusters, the cluster

in the middle is always crossed by an edge that connects the other two clus-

ters. See Chapter 7 for a further analysis, when drawings without crossings are

possible. Minimizing the number of cluster/edge crossings is NP-hard:
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Theorem 4.1. Cluster/edge crossing reduction is NP-complete:

Instance: A clustered level graph G = (V , E,C, I,φ) and a positive

integer K.

Question: Is there a clustered level embedding of G with at most K
cluster/edge crossings?

Proof. (Sketch) It is obvious that the problem is in NP. The challenging part of

the proof is showing the NP-hardness. We use a reduction from one-sided two-

level crossing reduction, which is known to be NP-hard [78, 80]. The input is a

two-level graph G = (V , E,φ), a permutation u1, . . . , u|V1| of the first level V1,

and an integer K. The permutation of V1 is fixed, while the second level V2 may

be reordered. The question is, whether G has a level embedding π with at most

K edge crossings and the first level ordered according to the given permutation:

∀i ∈ {1, . . . , |V1|} : π(ui) = i. For the reduction we construct a clustered level

graph G′ = (V ′, E′, C′, I′,φ′) that has a clustered level embedding with at most

K cluster/edge-crossings if and only if there is a solution for the one-sided

two-level crossing reduction problem.

The proof consists of three parts. We first describe the reduction, which is

essentially the construction of G′. The construction is illustrated in Figure 4.14.

Figure 4.15 shows the construction for an example graph. In the second part,

we prove the correctness of the reduction.

Before describing the construction of G′ in detail, we discuss some of the

used construction techniques. For controlling possible embeddings of the con-

structed clustered level graph, we use so-called ∞-edges. An ∞-edge consists

of a large number of parallel edges and multiple source vertices and target ver-

tices, see Figure 4.12. In illustrations, these edges are bold and marked with

∞. The actual number B of edges that are represented by an ∞-edge depends

on the input level graph and is large enough to prevent the edges from cross-

ing any cluster at all. For any level graph, B = |V1| · |V2| + 1 is sufficiently

large, because any level embedding of G has fewer edge crossings. Thus, if

K ≥ |V1| · |V2| + 1, there is always an solution for the one-sided two-level

crossing reduction problem, and therefore embeddings with so many crossings

never need to be considered.

Another technique is connecting clusters to blocks. As illustrated in Fig-

ure 4.13 multiple clusters that span at least two adjacent levels are connected

by a sequence of ∞-edges. Because of the edges, no other cluster can be po-

sitioned between two of the connected clusters. In particular the connected

clusters will be consecutive, and they will be positioned in the given order or in

the reverse order.
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(a) An∞-edge. . . (b) . . . and its meaning

Figure 4.12. ∞-edges

Figure 4.13. Using ∞-edges to build blocks

(a) Replacement for the first level vertices. (b) Replacement for an edge.

(c) Replacement for a vertex on the second level.

Figure 4.14. Reducing edge crossing minimization to cluster/edge-crossing
minimization



44 Chapter 4. Clustered Level Graphs

In detail, G′ is constructed on |V1| + 3 levels. The replacement for the ver-

tices u1, . . . , u|V1| of the first level in G is shown in Figure 4.14(a). Each vertex

ui is represented by a vertex u′i on level φ′(u′i) = i. The leveling of these ver-

tices directly corresponds to the given permutation of the first level in G. The

vertices u′1, . . . , u′n are contained in a common cluster c1, which also contains

some additional vertices, whose purpose shall be explained later.

Each edge (ui, vj) of G is represented in G′ by a proper edge eij and a

cluster cij as shown in Figure 4.14(b). The edge eij connects the vertex u′i with

the topmost vertex contained in cij on level i + 1. The cluster cij spans the

levels i+ 1, . . . , |V1| + 2 and is filled with one vertex per level, accordingly.

The vertices of the second level in G are not represented directly by vertices

in G′. It is only ensured that the clusters that represent endpoints of the in-

coming edges of a vertex are consecutive. If vertex vj has h incoming edges

ei1j, . . . , eihj , the corresponding clusters ci1j, . . . , cihj are connected to a block as

shown in Figure 4.14(c). For the correctness of the proof, it is necessary, that

the clusters are connected in ascending order i1 ≤ i2 ≤ · · · ≤ ih, i. e., according

to descending span of the clusters.

The construction is completed by some glue, namely another cluster c2 and

some more ∞-edges. The cluster c2 spans the levels |V1| + 1, . . . , |V1| + 3, and

is connected to c1 by an ∞-edge as shown in Figure 4.14(c). Also, the blocks

representing a second level vertex are connected by an ∞-edge to an vertex in

c1 on level |V1| + 3. This ensures that c1 is positioned between c2 and all other

clusters.

For the correctness of the reduction, we will show two properties: First,

there is a one-to-one correspondence between the following sets of embed-

dings: (i) the embeddings of G with the given permutation of the first level

and (ii) the clustered level embeddings of G′ with no crossings between an ∞-

edge and a cluster. Second, the level embedding of G has the same number of

edge crossings as the number of cluster/edge crossings in the corresponding

embedding of G′.
We have already seen that c1 is always positioned between c2 and all other

clusters. We assume w. l. o. g. that c2 is to the right of c1 and all other clusters

are to the left. The other case is symmetric. We have also seen that in an em-

bedding of G′ the clusters representing incoming edges of a second level vertex

are consecutive, while any permutation of the blocks is possible. This is equiv-

alent to permuting the vertices on the second level of G. The permutation of

u1, . . . , u|V1| is fixed by the leveling. This is equivalent to the fixed permutation

of the first level of G.

The clusters in G′ representing incoming edges of a second level vertex have

only been constrained to be consecutive, but it has not been assured, that they
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(a) An example graph G.

(b) The transformation G′.

Figure 4.15. An example for the reduction
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are ordered from left to right according to descending span. It would also

be possible for a whole block to be flipped and ordered in descending order.

However, it is easy to see that such an embedding never has fewer crossings

than the same embedding with ascending order.

Two edges with different source and target vertices cross in G if and only

if the corresponding clusters and edges in G′ cross. If two edges cross in the

embedding of G, their source and target vertices have different order on both

levels. This is equivalent to a different order of blocks in the embedding of G’.

Figure 4.16 illustrates the crossing of two edges.

(a) Non-crossing edges.

(b) Crossing edges.

Figure 4.16. Crossing vs. non-crossing edges

Two edges with a common end vertex never cross in G, and their replace-

ment in G′ does not induce a crossing either. If they have a common source ver-

tex, both clusters have the same height and therefore cannot cross the other’s
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edge. If the target vertex is common, there is no crossing either, because the

clusters have ben ordered according descending height.

Because two edges in an level embedding of G cross if and only if in the cor-

responding cluster level embedding of G′ their replacements induce a cluster/

edge crossing, embeddings with a minimum number of crossings correspond

to each other. �

4.4.3 Clustered Level Planarity

Reducing crossings also leads to the question, whether a drawing without any

crossings is possible. Analogously to defining a level planar embedding as a

level embedding without edge crossings, we define clustered level planar em-

beddings in a straight-forward way:

Definition 4.13 (Clustered Level Planar Embedding). Let G = (V , E,C, I,φ) be

a proper clustered level graph. A clustered level embedding π of (V , E,φ) is a

clustered level planar embedding of G if it fulfills the edge/edge and cluster/

edge restrictions. A clustered level graph is clustered level planar if there exists

a clustered level planar embedding of it.

This completes our analysis of needed and desirable properties of embed-

dings. Table 4.1 gives an overview of the considered embedding restrictions

and summarizes the presented results. In the following chapters the prob-

lem of avoid crossings is further investigated: Chapter 5 describes heuristics

for clustered crossing minimization, and Chapter 7 further analyses clustered

level planarity.

restriction always satisfiable crossing minimization

cluster/level yes, see Lemma 4.3 not applicable

cluster/cluster yes, see Lemma 4.3 not applicable

edge/edge no, Figure 4.10(c) NP-complete, see [102]

cluster/edge no, Figure 4.11(c) NP-complete, see Theorem 4.1

Table 4.1. Overview of embedding restrictions
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It is best to do things systematically, since we are only hu-
man, and disorder is our worst enemy.

Hesiod

5
Clustered Crossing Reduction

This chapter investigates the crossing reduction problem for clustered level

graphs. Given a clustered level graph, we want to find a clustered level embed-

ding with few crossings. That is, we compute a level embedding that satisfies

the cluster/level and cluster/cluster restrictions while it has as few violations

of the edge/edge and cluster/edge restrictions as possible. We have already

seen that this problem is NP-hard. Thus heuristics are used for the efficient

computation of an embedding.

We do not consider the computation of a drawing for a clustered level graph.

We have already seen in Lemma 4.2 that for any clustered level embedding of a

clustered level graph there is a drawing with rectangular cluster regions. Refer

to [195–197] for a drawing algorithm.

5.1 Previous Results

Before presenting our new results, we first review two previous heuristics for

crossing reduction in clustered graphs. Both algorithms extend crossing re-

duction heuristics that were originally developed for level graphs. They can be

implemented on top of any traditional crossing reduction heuristic, which is

an important property. As seen in chapter 3.3.3, there are many such heuris-

tics, which are adapted for different classes of level graphs. There is no clear

winner, and the choice depends on various parameters. For example, in dense

49
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graphs most heuristics give similar results, and therefore a simple and fast

heuristic like the barycenter heuristic is the best choice. In sparse graphs, how-

ever, advanced heuristics give clearly better results in exchange for a higher

running time. For small graphs it is even feasible to use exact algorithms

[126, 132, 133, 225]. It is therefore desirable to transfer the diversity of cross-

ing reduction algorithms to clustered level graphs. This leads to several con-

crete crossing reduction algorithms suited for different classes of clustered

level graphs.

Our goal is to give a generic scheme how crossing reduction algorithms for

level graphs can be extended to clustered level graphs. Obviously, the extension

of different heuristics results in algorithms with different quality. However, this

depends both on the original algorithm and on the extension scheme. Cross-

ings in clustered level embeddings can have three different reasons. Some of

them are unavoidable, because the clustered level graph is not clustered level

planar. The rest come either from the original heuristic or from the extension

scheme. For measuring the quality of an extension scheme, we only consider

the latter. A weak extension scheme decreases the quality of a heuristic, not

only because the clusters reduce the number of admissible permutations, but

also because new unnecessary crossings are created by the extension scheme.

5.1.1 Considering Clusters Independently

In clustered graphs, the most obvious idea for reducing crossings and for solv-

ing problems in general is to recursively solve the problem for every cluster.

This approach has been used many times, for example in graph editing tools

[181], drawing algorithms [10, 166], and layout graph grammars [16, 17, 119].

The contents and the outside of clusters are considered independently of

each other. First, the contents of the innermost clusters are drawn, i. e., of

those clusters that contain only vertices and no other clusters. Then the in-

ternal structure is hidden, and the clusters are treated as single large vertices.

Edges to and from a vertex contained in a collapsed cluster are connected to

the cluster vertex instead. This is repeated for every cluster, traversing the

cluster tree bottom up. At the end, the contents of each cluster are reinserted,

leading to an embedding for the whole graph. Instead of processing the cluster

tree bottom up, it is also possible to start at the root of the cluster tree, first

embedding the outside of the clusters and then inserting the contents recur-

sively.

Note that clusters across multiple levels are collapsed to vertices that span

multiple levels. This is not supported by all crossing reduction heuristics.

There are some algorithms that support vertices with arbitrary size by as-
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signing large vertices to multiple levels [97, 178, 200, 201]. These algorithms

also incorporate crossing reduction heuristics that handle multi-level vertices.

Those could be used to ensure the cluster/cluster restriction.

Even if we ignore the cluster/cluster restriction, Example 5.1 shows that con-

sidering clusters independently leads to unnecessary crossings. This is because

parts of the layout are computed without considering the global connectivity of

the graph, no matter whether the cluster tree is traversed top down or bottom

up. Even if an optimal level embedding is computed for the contents of each

cluster, this is no guarantee for an overall optimal clustered level embedding.

Example 5.1. Figure 5.1(a) shows a given clustered graph after an embedding

has been computed outside of the cluster. Up to now the contents of the cluster

have been ignored, and so the shown embedding has a minimum number of

crossings and is unique except for reflection. From now on the embedding of

the outer vertices is fixed. When later in Figure 5.1(b) the contents of the cluster

are considered, any permutation of the inner vertices results in four crossings.

However, if the algorithm had chosen a suboptimal outer embedding as shown

in Figure 5.1(c), a total number of one crossing would have been possible.

Swapping the contents and the outside of the cluster shows that traversing

the cluster tree bottom up also generates unnecessary crossings. Please note that

in general it is also not sufficient to additionally consider the edges entering a

cluster, because the shown effect does not have to occur at the border of the clus-

ter. Just imagine the entering edges replaced by arbitrarily long chains within

the cluster.

(a) (b) (c)

Figure 5.1. Unnecessary edge crossings when considering cluster contents in-
dependently
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5.1.2 Sander’s Crossing Reduction

While the main focus in the approach shown above is on the clustering, the

algorithm of Sander [195–197] primarily considers the leveling. His crossing

reduction method for clustered level graphs is based on conventional crossing

reduction in level graphs. The clusters are considered only secondarily to meet

the drawing conventions. They are ignored first, which leads to violations of

the cluster/level and cluster/cluster restrictions. These violations are resolved

afterwards.

The correction of an embedding π to satisfy the restrictions is done in two

stages. Each restriction is satisfied independently. To satisfy the cluster/level

restriction, for each cluster c ∈ C the average position of the contained vertices

b(c, i) =
∑

v∈Vc∩Vi

π(v)
|Vc ∩ Vi|

is used to sort each level i again. Because clusters are positioned as a whole,

the contained vertices are then consecutive. The main problem of this approach

is that only the intermediate vertex order is considered, and the edges are ig-

nored. Because of this, b(c, i) does not directly correspond to the average

position of adjacent outer vertices, and therefore is kind of a “wrong” sorting

criterion. It is easy to construct simple examples, where this strategy gives

many unnecessary crossings, see Figure 5.2.

(a) An illegal permutation before
reordering, b(c,2) = 22

3

(b) The corrected permutation after
reordering

(c) Optimal result

Figure 5.2. Unnecessary crossings with Sander’s method

The cluster/cluster restriction is then ensured by breaking cycles in the “is

left of” graph as illustrated in Figure 5.3. The levels are reordered by topo-

logically sorting the de-cycled graph. To introduce as few additional cross-

ings as possible, the algorithm does not remove a minimum number of edges,
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but instead uses a heuristic to minimize the number of generated crossings.

However, the heuristic does not guarantee optimality, and therefore again new

unnecessary crossings may be introduced.

(a) Before reordering (b) The “is left of” graph (c) After reordering

Figure 5.3. Sander’s method for respecting the cluster/cluster restriction

5.2 Advanced Clustered Crossing Reduction

Both of the presented algorithms generate unnecessary crossings. Since cross-

ing reduction is NP-hard, we cannot expect an efficient optimal crossing re-

duction algorithm for clustered level graphs. But in the above heuristics, some

crossings do not originate from the used crossing reduction method itself, they

arise from the application of the crossing reduction method to clustered level

graphs. Thus even with an optimal crossing reduction strategy for level graphs

these crossings are unavoidable. Furthermore, none of the algorithms accounts

for cluster/edge crossings. Only edge crossings are minimized.

We present a new algorithm for clustered crossing reduction that improves

the known results. The main idea is a scheme, how a one-sided two-level cross-

ing reduction method for level graphs can be applied to proper clustered level

graphs. The level sweep in the crossing reduction step stays the same as for

level graphs. The underlying graph is traversed top down and bottom up in

the same way, considering the clusters only during the two-level crossing re-

duction. In this regard our algorithm is very similar to the algorithm of Sander.

The main difference is the strict enforcement of the cluster/level and cluster/

cluster restrictions. While Sander’s algorithm first ignores the restrictions, our

strategy is to consider them right away. It therefore does not introduce unnec-

essary crossings. If it is used to extend an optimal one-sided two-level crossing

reduction algorithm, the result is an optimal one-sided crossing reduction algo-

rithm for clustered two-level graphs. Global optimality is not reached, because
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still the level sweep may introduce unnecessary crossings. This is not different

to level graphs, however.

Our method works by modifying the one-sided two-level crossing reduction

step used as a subroutine in the global crossing reduction to satisfy the clus-

ter/level and cluster/cluster restrictions. We assume a clustered level graph

G = (V , E,C, I,φ), with two levels V = V1 ∪ V2. The order of V1 is fixed, V2

must be reordered. Therefore, only the level cluster tree Γ2 of the second level

is considered.

5.2.1 Respecting the Cluster/Level Restriction

As a first step to the solution of the problem, we focus on the cluster/lev-

el restriction and ignore the cluster/cluster restriction for now. Since clusters

with only a single child on the second level cannot lead to violations of the clus-

ter/level restriction, they are ignored for efficiency reasons, and the contracted

level cluster tree ∆2 is used instead of Γ2. We observe the following lemma:

Lemma 5.1. Let G = (V , E,C, I,φ) be a clustered level graph. A level embedding

π of G satisfies the cluster/level restriction if and only if there exists a child

order of each contracted level cluster tree ∆i such that a preorder (or postorder)

traversal of ∆i traverses the vertices in embedding order.

Proof. For the only if direction let π be a satisfying embedding. For each level i
we sort the children z1, . . . , zh of each cluster c ∈ C by πmin(z1, i) ≤ · · · ≤
πmin(zh, i). Because of the cluster/level restriction, the horizontal ranges of

any two children are disjoint Π(zj, i)∩Π(zk, i) = ∅, and 1 ≤ j < k ≤ h implies

πmax(zj, i) < πmin(zk, i). Thus in a preorder traversal of ∆i with this child

order, all vertices Vzj ∩Vi contained in zj are traversed before those contained

in zk. Induction over the structure of ∆i delivers the desired result.

For the if direction consider an arbitrary child order in ∆i and a level em-

bedding π induced by a preorder traversal of ∆i. For a cluster c on level i and

a vertex v ∈ (Vi − Vc) we must show that π(v, i) 6∈ Π(c, i). This is easy to

see, because the vertices contained in c are traversed consecutively, and Π(c, i)
contains exactly this horizontal range. Since in ∆i the vertex v is no successor

of c, it is traversed either before or after all vertices contained in c. �

Because of this observation we will concentrate on finding child orders for

the level cluster tree and thereof obtain the embedding. From now on, the

terms child order and embedding will be used interchangeably. Next we will

analyse which child orders induce few edge crossings. Cluster/edge crossings

are considered later. The following lemma characterizes the relationship be-

tween edge crossings and the child order of some cluster:
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Lemma 5.2. Let e = (u,v), e′ = (u′, v′) ∈ E be two edges in a clustered two-

level graph G = (V1∪V2, E, C, I,φ), and let x be the lowest common ancestor of

v and v′ in the contracted level cluster tree ∆2 with two children y and y ′ that

are ancestors of v and v′, respectively. Then the edges e and e′ cross if and only

if y and y ′ have a different relative order than u and u′.

(a) (b)

Figure 5.4. Illustration for Lemma 5.2

Proof. Note that v and y resp. v′ and y ′ do not need to be different. The

following argumentation is correct in both cases.

For the only if direction let e and e′ cross each other. This implies u 6= u′.
We assume w. l. o. g. that π(u) < π(u′). Therefore π(v′) < π(v). Since π is

induced by a preorder traversal of the cluster tree, y ′ must be before y in the

child order of x.

For the if direction assume that y and y ′ have a different relative order

than u and u′, w. l. o. g. assume that π(u) < π(u′) and y ′ comes before y in

the child order of x. Then the preorder traversal implies π(v′) < π(v) and

therefore e and e′ cross. �

Thus each possible edge crossing can be associated to a unique cluster in

the level cluster tree. Whether two edges cross depends only on the child order

of the lowest common ancestor of their target vertices. It is independent of the

child order of all other clusters. Therefore, we say that the child order of some

cluster x induces a crossing of two edges e = (u,v) and e′ = (u′, v′) ∈ E if

x is the lowest common ancestor of v and v′. Since the total number of edge

crossings induced by some child order of the cluster tree is the sum of the

edge crossings induced by the child order of each cluster, we directly get the

following lemma:

Lemma 5.3. Let G = (V1 ∪ V2, E, C, I,φ) be a clustered two-level graph with a

fixed order of the first level. An embedding of G has a minimum number of edge

crossings subject to this order if and only if the child order of each cluster in the

contracted level cluster tree ∆2 induces a minimal number of edge crossings.
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This is an important result, which will lead to an optimal one-sided crossing

reduction for clustered two-level graphs. The decomposition of the clustered

crossing reduction problem used in Section 5.1.1 was suboptimal, because the

resulting instances of the one-sided two-level crossing reduction problem were

not independent of each other. Because of Lemma 5.3, we can use a new de-

composition, which yields the desired independency. We can compute the child

order of all clusters independently without losing quality.

To minimize the overall number of crossings, we independently minimize

for each cluster x ∈ C the number of crossings induced by its child order. We

construct a set of new weighted two-level graphs {G′x | x ∈ C }, called the

crossing reduction graphs of G. In each G′x the upper level V1 is the same as in

G, the lower level V ′2 consists of the children of x in ∆2. V ′2 contains vertices

and clusters of the original graph. The relevant edges of G are then transferred

to G′x in the following manner, independent of the depth of the clustering:

• Edges (u,v) ending in a vertex v that is not a successor of x in ∆2 are

ignored.

• For each remaining edge (u,v), an edge (u,y) with weight w(u,y) = 1

is created, where y is the unique child of x which is an ancestor of v . If

the edge already exists, its weight is increased by 1.

We get the following weight function

w :

V1 × V ′2 → N0,

(u,y) 7→
∣∣{v ∈ V2 ∩ succ∗∆2

(x) | (u,v) ∈ E }
∣∣

and a corresponding weighted graph G′x:

G′x =(V ′x, E′x,w)
V ′x =V1 ∪ V ′2, V ′2 = succ∆2(x)

E′x ={ (u,y) ∈ V1 × V ′2 | w(u,y) > 0 } .

See Figure 5.5 for an illustration. As a direct consequence of this definition

and because of Lemma 5.3, we observe the following lemma:

Lemma 5.4. Let G = (V1 ∪ V2, E, C, I,φ) be a clustered two-level graph with

a fixed permutation of V1. An embedding π of V2 has a minimal number of

crossings if and only if each crossing reduction graph has a minimal number of

crossings.

For a crossing reduction over more than two levels using the level sweep

technique, two crossings reduction graphs have to be computed for each clus-
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(a) A clustered level graph G without clusters across two levels

(b) G′c1
(c) G′c2

(d) G′c3

(e) G′c4
(f) G′c5

Figure 5.5. Creating the crossing reduction graphs

ter and level: One for each direction. Please note that all crossing reduction

graphs can be pre-computed before starting the level sweep, since they do not

change during the whole crossing reduction. Algorithm 5.1 shows how the

crossing reduction graphs can be computed efficiently by recursively combin-

ing the crossing reduction graphs of the children in ∆2.

Theorem 5.1. Algorithm 5.1 runs in O(|V2|·|E|) time. In a balanced level cluster

tree the running time is O(|V2| + |E| log |V2|).

Proof. The algorithm traverses the contracted level cluster tree ∆2 in postorder

(lines 13–14). When started at the root of the cluster tree, it is executed once

for each cluster, i. e., O(|V2|) times. Lines 2–4 can be implemented in constant

time and therefore lead to a running time of O(|V2|) over all invocations. Lines

7–10 consider every vertex of V2 and every edge of E totally once and therefore

need a total running time of O(|V2| + |E|). In lines 15–19 every edge of a cross-

ing reduction graph is inherited to the crossing reduction graph of the parent

cluster. For each edge this happens at most O(|V2|) times, or O(log |V2|) times

in a balanced cluster level tree. This sums up to O(|V2| · |E|) or O(|E| log |V2|),
respectively. The overall running time of the algorithm is therefore O(|V2|·|E|)
or O(|V2| + |E| log |V2|) in balanced cluster trees, respectively. �

A conventional algorithm for weighted one-sided two-level crossing reduc-

tion is then applied to the crossing reduction graph and the given order of

the first level. If the one-sided two-level crossing reduction algorithm does not
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Algorithm 5.1. CROSSING-REDUCTION-GRAPH
Input: A clustered two-level graph G = (V1 ∪ V2, E, C, I,φ),

A cluster x ∈ C , 2 ∈ Φ(C)
Output: The crossing reduction graph G′x of x

begin1

V ′2 ← succ∆2(x) // vertices2

V ′ ← V1 ∪ V ′2 // only implicitly3

E′ = ∅ // edges4

// for vertices in the crossing reduction graph:5

// transfer incident edges6

foreach v ∈ V ′2 ∩ V do7

foreach incoming edge e of v do8

E′ ← E′ ∪ {e} // keep children edges9

w(e)← 110

// for clusters in the crossing reduction graph:11

// transfer edges of the crossing reduction graphs of the children12

foreach y ∈ V ′2 ∩ C do13

G′y = (V ′y , E′y ,φ′y ,w′y)← CROSSING-REDUCTION-GRAPH(G,y)14

foreach e = (u,v) ∈ E′y do15

if (u,y) 6∈ E′ then16

E′ = E′ ∪ {(u,y)} // inherit children edges17

w′(u,y)← 018

w′(u,y)← w′(u,y)+w′y(u,v) // sum up edge weights19

return G′x = (V ′, E′,φ′,w′)20

end21
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support weighted edges, it is also possible to use w(e) multiple parallel edges.

The resulting order of the second level is used as the order for the children of

x. In the same way a child order for all other clusters is computed, and we get

an order for the vertices by traversing the tree.

5.2.2 Respecting the Cluster/Edge Restriction

Up to now only edge crossings have been considered, but we also want to avoid

cluster/edge crossings. Analyzing how cluster/edge crossings are related to

the child order of the level cluster tree, we observe the following lemma, which

transfers Lemma 5.2 to cluster/edge crossings:

Lemma 5.5. Let G = (V , E,C, I,φ) be a clustered two-level graph with an edge

e = (u,v) ∈ E, and a cluster c ∈ C that spans both levels. Let x be the lowest

common ancestor in ∆2 of v and c, and let y and y ′ be the two children of x
that are ancestors of v and c, respectively. Then e crosses c if and only if u 6∈ Vc
and y and y ′ have a different relative order than u and c on level 1.

(a) (b)

Figure 5.6. Illustration for Lemma 5.5

Proof. If u ∈ Vc the edge and the cluster do not cross by definition. The rest of

the proof is analogous to that of Lemma 5.2. �

This allows us to handle cluster/edge crossings in a similar way to edge

crossings. In a crossing reduction graph every relevant cluster is represented

by two border-edges, one for each vertical border of the cluster region. See

Figure 5.7 for an illustration.

Edges (u,v) that do not start within the cluster, u 6∈ Vc , always cross both

border-edges or none of them. A single cluster/edge crossing is equivalent to

a crossing of the edge with both cluster borders. Therefore, a weight of 1
2 is a



60 Chapter 5. Clustered Crossing Reduction

(a) A clustered level graph G with clusters across two levels

(b) G′c1
(c) G′c3

Figure 5.7. Avoiding cluster/edge crossings

good choice for the border-edges. Then a cluster/edge crossing is equivalent

to two crossings with weight 1
2 in the crossing reduction graph.

Depending on the application, cluster/edge crossings are more or less im-

portant than edge crossings. Minimizing crossings is a multi-valued optimiza-

tion problem. Since edges and clusters are represented by distinct edges in

the crossing reduction graphs, edge/edge and cluster/edge crossings can be

balanced by the weight of the additional edges for the clusters. If the impor-

tance of edge/edge and cluster/edge crossings is not the same, their weight is

multiplied by a balancing factor.

5.2.3 Respecting the Cluster/Cluster Restriction

For the final solution of the problem, only the cluster/cluster restriction re-

mains to be resolved. It is ignored by the algorithm as it has been described

up to now. To an extent the border-edges decrease the probability of clus-

ter/cluster crossings, but they do not prevent them entirely. We present three

alternative strategies for respecting the the cluster/cluster restriction.

The re-sort method is to use the same heuristic as described by Sander. We

assume that the border-edges already prevent cluster/cluster crossings in most

of the cases. Otherwise, the resulting embedding is re-sorted to eliminate cycles

in the “is left of” graph. It is clear that this way we lose the optimality of our

algorithm, because for solving the feedback arc set problem, we have to use a

heuristic. However, the results should still be better than in Sander’s algorithm,

because we have typically fewer violations of the cluster/edge restriction.

An alternative is the heavy edge method. Instead of using a small weight

of 1
2 for the border-edges, a large weight ist used, similar to the∞-edges in Sec-
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tion 4.4. If the weight of these edges is large enough, an optimum permutation

in the crossing reduction graphs never induces a cluster/cluster crossing. This

is also true for some non-optimal crossing reduction algorithms. It is easy to

see that, e. g., the barycenter and median heuristics then prevent cluster/cluster

crossings. Unfortunately, this is not guaranteed for an arbitrary non-optimal

crossing reduction heuristic. Consequently, it may be necessary to reorder the

vertices in the same way as in the re-sort method, although less likely. Fur-

ther, the greater edge weight additionally penalizes crossings between edges

and clusters. Depending on the application, this may be desirable or not.

The constraint method is the most promising alternative. It guarantees com-

pliance with the cluster/cluster restriction, but it depends on a two-level cross-

ing reduction algorithm that supports constraints, i. e., predefined relative or-

ders of some vertex pairs. A constraint (u,v) means that the vertex u must

be positioned left of the vertex v . Some of the conventional crossing reduc-

tion methods have been extended to support constraints with varying success.

There are also some crossing reduction methods designed specifically for the

support of constraints. In Chapter 6, we will further analyse constrained cross-

ing reduction in level graphs.

To satisfy the cluster/cluster restriction, the constraint method prevents

the relative position of two clusters spanning adjacent levels from being dif-

ferent. This is done by inserting a constraint into the crossing reduction graph

of one specific cluster. Because of Lemma 5.5 it is sufficient to add constraints

between clusters having the same parent in the level cluster tree. All clusters

c1, . . . , cq that are children of some parent cluster p are connected by a chain

of constraints (c1, c2), (c2, c3), . . . , (cq−1, cq).

Example 5.2. Figure 5.8(a) shows a graph G with five clusters and the crossing

reduction graphs for each cluster. The bold horizontal arrow in Figure 5.8(b)

shows the constraint (c2, c3) which has been inserted, because c2 and c3 are

children of the same parent cluster c1, and both span both levels. Because of the

constraint, c5, which is nested within c3, is also automatically positioned to the

right of c2.

The constraint method effectively prevents cluster/cluster crossings. As-

suming an optimal constrained one-sided two-level crossing reduction, this

leads to an optimal crossing reduction for clustered two-level graphs, see Algo-

rithm 5.2.

Theorem 5.2. Algorithm 5.2 gives a minimum number of crossings for the clus-

tered one-sided two-level crossing reduction problem when used with an optimal

constrained one-sided two-level crossing algorithm.
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(a) A clustered level graph G with clusters across two levels

(b) G′c1
for the constraint method (c) G′c1

for the heavy edge method

Figure 5.8. Respecting the the cluster/cluster restriction

Algorithm 5.2. CLUSTERED-CROSSING-REDUCTION
Input: A clustered two-level graph G = (V1 ∪ V2, E, C, I,φ),

The contracted level cluster tree ∆2

Output: A clustered level embedding of G

begin1

r ← root cluster of G2

CROSSING-REDUCTION-GRAPH(r )3

insert border-edges4

insert constraints for multi-level clusters5

foreach c ∈ C do6

minimize crossings in G′c7

obtain an embedding π of V2 by a DFS traversal of ∆28

return π9

end10
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Corollary 5.1. Let G = (V1 ∪ V2, E, C, I,φ) be a clustered two-level graph such

that the level cluster tree ∆2 has bounded degree. Then the one-sided crossing

reduction problem can be solved in O(|V2| · |E|) time.

Proof. Because of the bounded degree, every crossing reduction graph has a

bounded number on vertices on the second level. Thus there is only a constant

number of permutations of the second level, and an exhaustive search runs in

constant time. �

5.3 Experimental Analysis

To analyse the performance of our heuristic, we have implemented both the

constraint method and Sander’s algorithm in Java. We have used three different

heuristics for constrained one-sided two-level crossing reduction: The penalty

graph heuristic, a straight-forward extension of the sifting heuristic [105, 161,

191], and a new extension of the barycenter heuristic, see Chapter 6.

We have tested the implementations using a total number of 37,500 random

clustered two-level graphs: 150 graphs for every combination of the following

parameters:

|V2| ∈ {50,100,150,200,250},
|E|/|V2| ∈ {1,2,3,4,5,6,7,8,9,10},
|C|/|V2| ∈ {0,0.25,0.5,0.75,1.0}.

Figure 5.9 displays a direct comparison of the four algorithms. The three

diagrams show, how the results vary, when one of the three parameters is

changed. Because the number of crossings grows very fast in the number of

edges, we do not compare absolute crossing numbers, but the number of cross-

ings divided by the number of crossings before the crossing reduction. As ex-

pected, the constraint method gives significantly better results than Sander’s

heuristic. For a more detailed comparison, we have also analyzed the quotient

of the crossing numbers in Figure 5.10. These graphs show that results of the

constraint algorithm have up to 15% less crossings than the results of Sander’s

algorithm. It can also be seen, that the results for different constrained cross-

ing reduction algorithms is very small.

The running time of the algorithms is compared in Figure 5.11. As expected,

Sander’s algorithm is fastest, but it can also be seen, that the higher running

time of the constraint method very much depends on the used constrained

crossing reduction algorithm. Together with our extended barycenter heuristic,

the running time is still comparable to Sander’s algorithm, while its quality is
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Figure 5.9. The number of crossings compared to random order. Smaller values
are better.
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Figure 5.10. The number of crossings compared to Sander’s algorithm. Smaller
values are better.
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significantly better. The second diagram shows the running time in relation to

the cluster density. This reveals an interesting result: Computational intensive

constrained crossing reduction algorithms, i. e., the penalty graph method and

sifting, run faster with clusters than without. This is, because with clusters,

the instances for which the constrained crossing reduction is used are smaller.

Also, exact methods are more feasible with many clusters, because then every

crossing reduction graphs consist of only few vertices, see also Corollary 5.1.
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My freedom will be so much the greater and more mean-
ingful the more narrowly I limit my field of action and the
more I surround myself with obstacles. Whatever diminishes
constraint diminishes strength. The more constraints one
imposes, the more one frees one’s self of the chains that
shackle the spirit.

Igor Stravinsky

6
Constrained Crossing Reduction

In the previous chapter, we have presented algorithms for clustered cross-

ing reduction. In one of them, the constraint method, constrained one-sided

two-level crossing reduction appears as a subproblem. However, constrained

crossing reduction is not only needed for clustered crossing reduction. It can

also be used for the solution of other problems, such as the application of the

Sugiyama algorithm to graphs with vertices of arbitrary size [97, 200], or for

preserving the mental map when visualizing a sequence of related graphs [200].

The constraints may also be given by the semantics of the graph, e. g., if in UML

diagrams all associations between classes should be drawn from left to right.

This chapter analyses the constrained one-sided two-level crossing reduc-

tion problem and gives a new heuristic based on the barycenter heuristic.

6.1 Problem Statement

In constrained one-sided two-level crossing reduction, not only the permutation

of the first level is fixed, but also some pairs of vertices on the second level have

a fixed relative position. Figure 6.1 shows a two-level graph with one constraint

r = (w,v), visualized by the bold arrow. The constraint means that its target

vertex v must be positioned on the right of its source vertex w. In Fig. 6.1(a),

the constraint is violated, and in Fig. 6.1(b) it is satisfied. Obviously, constraints

may increase the minimum number of crossings, in this case from two to five.

69
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(a) The constraint is violated (b) The constraint is satisfied

Figure 6.1. The constrained crossing reduction problem

Formally, an instance of the constrained one-sided two-level crossing reduc-

tion problem consists of a two-level graph G = (V1∪V2, E,φ), E ⊆ V1×V2 with

a fixed permutation π of the vertices on the first level V1, and a set R ⊆ V2×V2

of constraints such that the constraint graph GR = (V2, R) is acyclic. It is our

objective to find a permutation of the vertices on the second level V2 with a

minimal number of edge crossings and all constraints satisfied. As a superset

of the one-sided two-level crossing reduction problem, this problem is NP-hard

as well.

Please note that in Chapter 5 only linear constraint graphs occurred, consist-

ing of a simple path and isolated vertices. Nevertheless, we consider the general

problem, because there are also applications for arbitrary constraint graphs,

e. g., when preserving the mental map or in UML class diagrams. For cyclic con-

straint graphs not all constraints can be satisfied simultaneously. Then some

constraints are deleted using a feedback arc set heuristic as described in Sec-

tion 3.3.1.

6.2 Previous Results

The constrained crossing reduction problem has been considered several times.

Sander [196] proposes a simple strategy to extend iterative two-level cross-

ing reduction algorithms to handle constraints. Starting with an arbitrary ad-

missible vertex permutation, updates are only executed if they do not violate

a constraint. This can be applied directly to iterative heuristics like sifting

[105, 161, 191], while with the barycenter heuristic a modified sorting algo-

rithm is used: The positions of two vertices are only swapped, if no constraint

is violated. Waddle [227] presents a similar algorithm: After the calculation

of the barycenter values it is checked for each constraint whether its target

has a lower barycenter value than its source. In that case the constraint would

be violated after sorting the vertices by the barycenter values. To avoid this,

the barycenter value of the source vertex is changed to the barycenter value

of the target vertex plus some small value. The result of both heuristics is a

vertex permutation that satisfies all constraints. However, the extensions are
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rather restrictive and often prevent the algorithm from finding a good permu-

tation. Accordingly, the results are significantly worse than in graphs without

constraints [200].

Schreiber [200] and Finnocchi [50, 51, 89] have independently presented

an algorithm that considers constraints and crossing minimization simultane-

ously. The main idea of this algorithm is to reduce the constrained crossing

reduction problem to the weighted feedback arc set problem. As an superset

of the unweighted feedback arc set problem [55], this problem is also NP-hard.

First the so-called is constructed. Its vertices are the vertices of the second

level. For each pair (u,v) of vertices the number of crossings in the two rela-

tive orders of u and v is compared. Here, only crossings between edges inci-

dent to u or v are counted. If the number of crossings cuv in the relative order

. . . , u, . . . , v, . . . is smaller than the number of crossings cvu in the reverse or-

der . . . , v, . . . , u, . . . , then an edge e = (u,v) with weight w(e) = cvu − cuv is

inserted. Each constraint is added as an edge with infinite (or very large) weight.

Figure 6.2 shows the penalty graph of the two-level graph in Fig. 6.1.

Figure 6.2. The penalty graph of Figure 6.1

Then a heuristic for the weighted feedback arc set problem is applied to the

penalty graph. It is important that the used heuristic guarantees that the edges

with infinite weight are not reversed, or constraints may be violated. Finally

the vertices of the now acyclic penalty graph are sorted topologically, and the

resulting permutation defines the order of the second level.

If no edges had to be reversed, then the number of crossings meets the

obvious lower bound

cmin =
∑

{u,v}∈V2

min{cuv , cvu} .

Each reversed edge e increments the number of crossings by its weight. This

implies that an optimal solution of the weighted feedback arc set problem is

also optimal for the constrained crossing reduction problem.

A comparison of the approaches of Sander [196] and Waddle [227] with

those of Schreiber [200] and Finnocchi [50, 51, 89] shows a direct trade-off

between quality and execution time. Schreiber presents detailed experimental

results which show that the penalty graph approach generates significantly less

crossings than the barycenter heuristic extensions. This is especially evident,
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if there are many constraints. The running times, however, are considerably

higher. This is not very surprising due to the O(|V2|4 + |E|2) time complexity

of Schreiber’s algorithm.

6.3 A Modified Barycenter Heuristic

The goal of our research is to build an algorithm that is as fast as the exist-

ing barycenter extensions while delivering a quality comparable to the penalty

graph approach. To achieve this we use a new extension of the barycenter

heuristic. We could have used the median heuristic as well, but we did not, be-

cause it is experimentally worse, and in our algorithm median values are more

difficult to handle and lead to a higher running time.

We describe our algorithm for the unweighted constrained two-level cross-

ing reduction problem and assume a weight of 1 for all edges. An extension of

the algorithm to two-level graphs with weighted edges is straight-forward by

using the edge weights for calculating the barycenter values instead.

6.3.1 Idea

We start by computing the barycenter values of all vertices. As long as the

source of each constraint has a lower barycenter value than the target, all

constraints are satisfied automatically. In the reverse case the permutation

has to be corrected. In this context, we call a constraint r = (s, t) satisfied if

b(s) < b(t) and violated otherwise.

Our algorithm is based on a simple assumption: If a constraint is violated as

in Fig. 6.3(a), the greater barycenter value of the source vertex indicates more

edges “to the right” than “to the left”, |E3| > |E1|. The converse is true for

the target vertex, |E4| < |E2|. In this situation we assume that in the corrected

permutation no other vertices should be positioned in-between. This seems

plausible, because usually between s and t larger subsets of adjacent edges

have to be crossed than beyond. For a vertex with only one incident edge there

is always an optimal position beyond any violated constraint if using median

values. This is not generally true, however, for vertices of higher degree or for

the barycenter heuristic, as Fig. 6.3(b) shows. The optimal position for vertex

v is in the middle, where its edges generate six crossings as opposed to eight

crossings at the other two positions. Nevertheless, adopting the assumption is

justified by good experimental results presented in Sect. 6.5.
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(a) After the correction of a previously vio-
lated constraint (b(s) > b(t)), vertices with
a single edge should not be positioned in-
between.

(b) In general, the optimal position for a
vertex may be between the vertices of a vi-
olated constraint.

Figure 6.3. The basic assumption of our algorithm

6.3.2 Main Algorithm

Our heuristic, shown in Algorithm 6.1, partitions the vertex set V2 into totally

ordered vertex lists. Initially there is one singleton list L(v) = 〈v〉 per vertex v .

In the course of the algorithm these lists are pairwise concatenated into longer

lists according to violated constraints. Concatenated lists are represented by

new dummy vertices with associated barycenter values. As long as there are

violated constraints, each violated constraint r = (s, t) is removed one by one

and the lists containing s and t are concatenated in the required order. They

are then treated as a cluster of vertices. This guarantees that the constraint

is satisfied but prevents other vertices from being placed between s and t.
Following our assumption, this does no harm. A new vertex vr replaces s and

t to represent the concatenated list L(vr ) = L(s) ◦ L(t). The barycenter value

of vr is computed as if all edges that are incident to a vertex in L(vr ) were

incident to vr . This can be done in constant time as demonstrated in lines 9

and 10 of the algorithm. Note that this efficient computation cannot be done

for the median value. Therefore, and because of its experimental superiority,

we only consider the barycenter heuristic.

When no violated constraints are left, the remaining vertices and vertex lists

are sorted by their barycenter value as in the standard barycenter heuristic. The

concatenation of all vertex lists results in a vertex permutation that satisfies all

constraints. We claim that it has few crossings as well.

6.3.3 Constraint Processing Order

For the correctness of the algorithm, i. e., for satisfying all constraints, it is

important to consider the violated constraints in the right order. In Fig. 6.4 the

constraints are considered in the wrong order and r is processed first. This

leads to a cycle in the resulting constraint graph which makes it impossible

to satisfy all remaining constraints, although the original constraint graph was



74 Chapter 6. Constrained Crossing Reduction

Algorithm 6.1. CONSTRAINED-CROSSING-REDUCTION
Input: A two-level graph G = (V1, V2, E,φ), a permutation π of V1, and

acyclic constraints R ⊆ V2 × V2

Output: A permutation of V2

begin1

foreach v ∈ V2 do2

b(v)←
∑
u∈pred(v)π(u)/deg(v) // barycenter of v3

L(v)← 〈v〉 // new singleton list4

V ← { s, t | (s, t) ∈ R } // constrained vertices5

V ′ ← V2 − V // unconstrained vertices6

while (s, t)← FIND-VIOLATED-CONSTRAINT(V ,R) 6= ⊥ do7

create new vertex vr8

deg(vr )← deg(s)+ deg(t) // update barycenter value9

b(vr )←
(
b(s) · deg(s)+ b(t) · deg(t)

)
/deg(vr )10

L(vr )← L(s) ◦ L(t) // concatenate vertex lists11

foreach r ∈ R do12

if r is incident to s or t then13

make r incident to vr instead of s or t14

R ← R − {(vr , vr )} // remove self loops15

V ← V − {s, t}16

if vr has incident constraints then V ← V ∪ {vr}17

else V ′ ← V ′ ∪ {vr}18

V ′′ ← V ∪ V ′19

sort V ′′ by b()20

L← 〈〉 // concatenate vertex lists21

foreach v ∈ V ′′ do22

L← L ◦ L(v)23

return L24

end25
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(a) Before the merge all con-
straints are satisfiable by the
given order. Let r be violated.

(b) After merging s and t
the generated constraint cycle
makes it impossible to satisfy
all constraints.

(c) Starting with r ′ leads to a correct result.

Figure 6.4. Considering constraints in the wrong order

acyclic. If r is violated, at least one of the other constraints is also violated.

Processing this constraint first leads to a correct result.

Thus, we must avoid generating constraint cycles. We use a modified topo-

logical sorting algorithm on the constraint graph. The constraints are consid-

ered sorted lexicographically by the topsort numbers of the target and source

vertices in ascending and descending order, respectively. Using Algorithm 6.2

this traversal can be implemented in O(|R|) time. The vertices are traversed

in topological order. The incoming constraints of a vertex t are stored in an

ordered list L(t) that is sorted by the reverse traversal order of the source ver-

tices. If a traversed vertex has incoming violated constraints, the topological

sorting is cancelled and the first of them is returned. Note that the process-

ing of a violated constraint can lead to newly violated constraints. Thus the

traversal must be restarted for every violated constraint.

6.4 Theoretical Analysis

6.4.1 Correctness

In this section we analyse the correctness of our algorithm. We have to show

that the vertex permutation computed by our algorithm satisfies all constraints.

We start by analyzing Algorithm 6.2:

Lemma 6.1. Let r = (s, t) be a constraint returned by Algorithm 6.2. Then merg-

ing of s and t does not introduce a constraint cycle of two or more constraints.

Proof. Assume that merging of s and t generates a cycle of at least two con-

straints. Because there was no cycle before, the cycle originates from a path p
in GR from s to t with a length of at least two. Because of the specified con-

straint traversal order, any constraint in p has already been considered, and
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Algorithm 6.2. FIND-VIOLATED-CONSTRAINT
Input: An acyclic constraint graph GR = (V ,R) without isolated vertices
Output: A violated constraint r , or ⊥ if none exists

begin1

S ←∅ // active vertices2

foreach v ∈ V do3

L(v)← 〈〉 // empty list of incoming constraints4

if indeg(v) = 0 then5

S ← S ∪ {v} // vertices without incoming constraints6

while S 6= ∅ do7

choose v ∈ S8

S ← S − {v}9

foreach r = (s, v) ∈ L(v) in list order do10

if b(s) ≥ b(v) then11

return r12

foreach outgoing constraint r = (v, t) do13

L(t)← 〈r〉 ◦ L(t)14

if |L(t)| = indeg(t) then15

S ← S ∪ {t}16

return ⊥17

end18
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thus is satisfied. This implies that b(t) > b(s), and therefore contradicts the

assumption. �

Lemma 6.2. Let G = (V1 ∪ V2, E,φ) be a two-level graph with a fixed permu-

tation π : V1 → {1, . . . , |V1|} of the first level, and an acyclic set R ⊆ V2 × V2 of

constraints. Then the permutation of G2 computed by Algorithm 6.1 satisfies all

constraints.

Proof. Algorithm 6.1 maintains the invariant that the constraint graph is acyclic.

Because of Lemma 6.1 no nontrivial cycles are introduced, and self loops are

explicitly removed in line 15.

Next we analyse whether the removed self loop constraints are satisfied by

the algorithm. Any such self loop r ′ has been generated by the lines 12–14

from a constraint between s and t. Because of the constraint r = (s, t), the

invariant implies that r ′ was not directed from t to s. Therefore r ′ = (s, t) is

explicitly satisfied by the list concatenation in line 11.

Each remaining constraint has not been returned by Algorithm 6.2. Thus,

the barycenter value of its source vertex is less than that of its target vertex.

Then the constraint is satisfied by line 20. �

Theorem 6.1. Algorithm 6.1 and Algorithm 6.2 correctly solve the one-sided

two-level crossing reduction problem.

6.4.2 Complexity

This section analyses the running time of our algorithm. Again, we start with

the analysis of Algorithm 6.2:

Lemma 6.3. Let GR = (V ,R) be an acyclic constraint graph without isolated

vertices. Then Algorithm 6.2 runs on GR in O(|R|) time.

Proof. The initialization of the algorithm in lines 2–6 runs in O(|V |) time.

The while-loop is executed at most |V | times. The nested foreach-loops are

both executed at most once per constraint. The sum of these time bounds is

O(|V | + |R|). Because the constraint graph does not contain isolated vertices,

the overall running time of the algorithm is bounded by O(|R|). �

Theorem 6.2. Algorithm 6.1 runs in O(|V2| log |V2| + |E| + |R|2) time.

Proof. The initialization of the algorithm in lines 2–4 considers every vertex and

edge once and therefore needs O(|V2| + |E|) time. The while-loop is executed

at most once per constraint. It has an overall running time of O(|R|2) because

the running time of one loop execution is bounded by the O(|R|) running time
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of Algorithm 6.2. Finally the sorting in line 20 needs O(|V2| log |V2|) time. The

sum of these time bounds is O(|V2| log |V2| + |E| + |R|2). All other statements

of the algorithm do not increase the running time. �

6.5 Experimental Analysis

To analyse the performance of our heuristic, we have implemented both our

algorithm and the penalty graph approach in Java. We have tested the imple-

mentations using a total number of 37,500 random graphs: 150 graphs for

every combination of the following parameters:

|V2| ∈ {50,100,150,200,250},
|E|/|V2| ∈ {1,2,3,4,5,6,7,8,9,10},
|R|/|V2| ∈ {0,0.25,0.5,0.75,1.0}.

Figure 6.5 displays a direct comparison of the two algorithms. The three dia-

grams show, how the results vary, when one of the three parameters is changed.

Because the number of crossings grows very fast in the number of edges, we do

not compare absolute crossing numbers, but the number of crossings divided

by the number of crossings before the crossing reduction. As expected, the

penalty graph approach gives strictly better results than our heuristic. But the

graphs also show that the difference is very small. For a more detailed compar-

ison, we have also analyzed the quotient of the crossing numbers in Figure 6.6.

These graphs show that results of our algorithm are never more than 3% worse

than the results of the penalty graph approach. For most graphs the difference

is below 1%. Only for very sparse graphs there is a significant difference.

This is a very encouraging result, considering the running time difference of

both algorithms: Figure 6.7 compares the running time of the algorithms. As

expected, our algorithm is significantly faster than the penalty graph approach.

Because of the high running time of the penalty graph approach we have not

compared the algorithms on larger graphs, but our algorithm is certainly ca-

pable of processing larger graphs. For example, graphs with |V2| = 1000,

|E| = 2000, and |R| = 500 can be processed in less than a second, although

our implementation is not highly optimized.
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Figure 6.5. The number of crossings compared to random order. Smaller values
are better.
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A mathematician is a device for turning coffee into theorems.

Paul Erdös

7
Clustered Level Planarity

In the previous chapters, our main objective was to compute drawings with few

crossings. We will now consider the related question, whether a clustered level

graph can be drawn without any crossings at all, i. e., whether it is clustered

level planar. Despite the computational complexity of avoiding crossings, their

needlessness is often very evident to a human viewer. Drawings with just a sin-

gle edge crossing are often considered of poor quality if that crossing evidently

could have been avoided. Many viewers regard such obviously avoidable cross-

ings as a failure of the crossing reduction. Thus it is particularly important

not to generate unnecessary crossings, if a planar drawing is possible. Unfor-

tunately, crossing minimization heuristics may leave crossings even for planar

graphs. Therefore, planar drawings need a different approach.

We will first summarize the state of the art regarding planarity testing of

graphs, level graphs and clustered graphs. Afterwards, we will see how these

known results may be extended to treat the new problem of clustered level

planarity testing and embedding.

7.1 Previous Results

The theory of planarity has a long tradition. First results date back to Euler’s re-

search in the 18th century, such as his famous formula |E| ≤ 3|V |−6 for planar

simple graphs with at least three vertices. Since then planarity has been inten-

83
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sively studied for various drawing conventions and classes of graphs. There are

many algorithms and theoretical results for graphs, level graphs, and clustered

graphs, see for example [135, 175]. We will combine and extend these results

for the investigation of clustered level planarity.

7.1.1 Planarity

A graph is planar if it admits a drawing in the plane without edge crossings.

Interestingly enough, this is equivalent to the existence of a planar straight-line

drawing as shown independently by Steinitz and Rademacher [212], Wagner

[229], Fáry [98], and Stein [211]. Planar drawings of graphs are widely accepted

as well readable. As a consequence, there are many algorithms for drawing

planar graphs, see for example [39, 40, 47, 113, 135, 199, 223, 224].

Although the problems of minimizing crossings and testing for planarity

seem similar, they are very different in terms of complexity. We have already

seen that the crossing minimization problem is NP-hard for graphs and level

graphs even in the one-sided two-level case. The planarization problem, i. e.,

determining a minimum set of edges whose removal eliminates all crossings, is

NP-hard as well [76, 78, 157, 170, 222]. The planarity testing problem, however,

can be solved efficiently for graphs and level graphs. This suggests that an

efficient solution for planarity testing of clustered level graphs might exist as

well. For clustered graphs, however, the complexity of planarity testing is one

of the major open problems in graph drawing [19].

For testing planarity of graphs, there are many efficient algorithms, e. g., the

LEC algorithm by Lempel, Even, and Cederbaum [83, 149]. This algorithm can

be implemented in linear time using the PQ-tree data structure of Booth and

Lueker [11]. It also has been extended by Chiba, Nishizeki, Abe, and Ozawa [38]

to compute planar embeddings for planar graphs in linear time. Other efficient

algorithms for planarity testing include the online planarity testing method of

di Battista and Tamassia [58], and the path addition method of Hopcroft and

Tarjan [120], which is based on work of Auslander and Parter [2] and Goldstein

[107]. Several other algorithms [48, 49, 140, 141, 207, 208, 234] also solve the

problem. Recently, Boyer and Myrvold [14, 15] have proposed a new linear time

algorithm which is based on edge addition. This algorithm ist very interesting,

because it is easy to understand and very fast in experimental results [12, 13].

7.1.2 Level Planarity

The level planarity problem [56, 116, 130] is the straightforward extension of

planarity to level graphs. Given a level graph, we want to know whether there is
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a level planar embedding, i. e., whether the level graph can be drawn such that

all vertices of the i-th level are placed on a horizontal line li = { (x, i) | x ∈ R },
and the edges are drawn as strictly y-monotone curves without crossings.

Note that the definition of a level graph includes a leveling of the vertices.

Therefore, the leveling is given and need not be computed. Level planarity

testing is substantially different from finding a level planar leveling. Heath and

Rosenberg [118] have shown that deciding whether a planar graph has a proper

level planar leveling is NP-hard. In contrast, if properness is not required, then

every planar graph has a level planar leveling with up to O(|V |) levels and

possibly long edges. This follows for example from straight-line grid drawings

[46, 47, 55, 199] or visibility representations [55, 57, 59, 189, 219] of planar

graphs. Both approaches, however, ignore the number of levels and the length

of the edges. Ω(|V |) is also the lower bound for the number of levels, as a

sequence of nested triangles [46] shows.

Similarly to planarity, there are several efficient algorithms for level pla-

narity testing. The initially developed algorithms could only be applied to a

restricted class of level graphs. The linear time algorithm of di Battista and

Nardelli [56] is restricted to proper level graphs with a single source vertex,

while the linear time algorithm of Chandramouli and Diwan [37] only works for

triconnected DAGs.

The first linear time algorithm that correctly decides level planarity for arbi-

trary level graphs ist the JLM algorithm by Jünger, Leipert, and Mutzel [127–

131, 148]. This algorithm is based on the work of Heath and Pemmaraju

[116, 117], which in turn extends the algorithm of di Battista and Nardelli [56].

An extended version of the JLM algorithm is also able to compute level pla-

nar embeddings for level planar graphs. The JLM algorithm, however, is rather

complex and difficult to implement. Therefore, Healy and Kuusik [115] pre-

sented a much simpler approach which runs in O(|V |2) time for proper graphs

and computes an embedding in O(|V |3) time.

Finally, there are some interesting theoretical results about level planarity

testing. Dujmovíc et al. [63] applied the concept of fixed parameter tractability

and thereby obtained a linear running time algorithm for a bounded number of

levels. Randerath et al. [187] presented a quadratic time reduction of level pla-

narity of proper level graphs to the satisfiability problem of Boolean formulas

in 2CNF, which is solvable in linear time.

7.1.3 Algorithm of di Battista and Nardelli

Our algorithm for testing planarity of clustered level graphs in Section 7.2 is

an extension of the algorithm of di Battista and Nardelli [56] for testing level
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planarity of proper level graphs with a single source vertex. It is necessary to

give a sketch of this algorithm before we can describe our extensions. We use

a simplified notation for the description.

Let G = (V , E,φ) be a k-level graph. The basic idea of the algorithm is to

perform a top down sweep over the graph, processing the levels in ascending

order and for every level Vi to compute a set of vertex permutations that ap-

pear in some level planar embedding of Gi. Gi is the subgraph induced by the

vertices of the first i levels V1 ∪ V2 ∪ · · · ∪ Vi. The input graph G is level pla-

nar if and only if the set of permutations of Gk = G is not empty. Figure 7.1

illustrates the level sweep.

Figure 7.1. Vertices are reduced level by level

This is very similar to the LEC algorithm [83, 149] for testing planarity of

graphs. The main difference is the processing order of the vertices. While for

level graphs the vertices are processed in level order, a special order, called

st-numbering [83, 84, 149] is used for graphs.

In order to store and manipulate sets of admissible vertex permutations ef-

ficiently, a data structure called PQ-tree is used. PQ-trees have been introduced

by Booth and Lueker [11] for the linear time implementation of the LEC algo-

rithm. Given a set S, a PQ-tree represents the set of those permutations of S in

which the members of specified subsets of S occur consecutively. It is a rooted

and ordered tree with leaves and two types of inner nodes, P- and Q-nodes,

see Figure 7.2. P-nodes are drawn as circles, Q-nodes are drawn as rectangles.

The leaves correspond to the elements of S and the possible permutations are

encoded by the combination of the two types of inner nodes. The children

of a P-node can be permuted arbitrarily, whereas the children of a Q-node are

ordered and only reversion of the children is allowed.
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Figure 7.2. A PQ-tree

If PQ-trees are used in planarity tests, a P-node always represents a cut ver-

tex and a Q-node represents a biconnected component of the visited part of

the graph. The leaves represent edges to the unvisited part of the graph. Edges

with the same target vertex on the next level that are represented by two dis-

tinct leaves of a PQ-tree impose a restriction on the admissible permutations,

because there must not be a leaf between them that represents an edge ending

at a different vertex. If there are no permutations with the given restrictions,

the PQ-tree is empty.

The two most important operations on PQ-trees are REDUCE and REPLACE.

The REDUCE operation restricts the encoded set of permutations such that all

elements of a given subset S′ ⊆ S are consecutive in all remaining permuta-

tions. PQ-leaves representing elements of S′ are called pertinent. After the

reduction, the so-called pertinent subtree is the unique subtree of minimum

height containing all pertinent PQ-leaves. Its root is called the pertinent root.

All vertices on a path from the pertinent root to a pertinent leaf are also called

pertinent. REDUCE is implemented on a PQ-tree by traversing bottom up the

pertinent subtree, and performing local updates for all traversed nodes. The

local updates are done according to a static set of rules called templates. In

Figure 7.3 one of these templates is shown as an example. The triangles repre-

sent subtrees. Pertinent nodes and subtrees are drawn in grey. For a detailed

description see [11].

Figure 7.3. A PQ-tree template
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The REPLACE operation replaces a set of elements X = {x1, . . . , xp} by a

set of new elements Y = {y1, . . . , yq} in all stored permutations. REPLACE

imposes the precondition that before an application the elements of X must

be consecutive in all stored permutations. They can be in arbitrary order π ,

however:

(a1, . . . , ai−1, xπ(1), . . . , xπ(p), ai+1 . . . , aq)

In practice this restriction is always satisfied, because REPLACE is always called

directly after REDUCE. Then every permutation in S is replaced by a set of per-

mutations in which the elements of X have been substituted by a permutation

π ′ of the elements of Y :

(a1, . . . , ai−1, yπ ′(1), . . . , yπ ′(q), ai+1 . . . , aq)

In a PQ-tree, REPLACE is implemented as follows: Because of the precondition,

the leaves of the PQ-tree that represent the elements of X are the leaves of a

subtree or of multiple sibling subtrees. These subtrees are removed from the

tree and replaced by a new P-node whose children are new PQ-leaves for the

elements of Y .

Algorithm 7.1 describes the algorithm of di Battista and Nardelli. Since

the input graph has only a single source vertex, all intermediate graphs Gi are

connected. Therefore, in contrast to the JLM algorithm, a single PQ-tree T(Gi) is

sufficient. It represents the set of those admissible permutations of the vertices

in Vi that appear in some level planar embedding of Gi. At the beginning, the

PQ-tree is initialized with all permutations of the first level, which in our case

only contains the single source vertex, V1 = {s}. Thus, there is exactly one

permutation, and the initial PQ-tree consists of a single leaf with label s and no

inner nodes. Then, the graph is traversed level by level, and for each level i the

PQ-tree is updated to reflect the admissible permutations of the next level i+1.

If for some level there are no admissible permutations, then the graph ist not

level planar and the algorithm aborts. If after the traversal of all levels there

are left some permutations of the last level, then the graph is level planar.

The update of the set of admissible permutations is done by the proce-

dure CHECK-LEVEL in Algorithm 7.2. For efficiency reasons all operations are

performed directly in T(Gi) as opposed to in the graph. Define Hi to be the

extended form of Gi. It consists of Gi and some new virtual vertices and virtual

edges. For every edge (u,v) with u ∈ Vi and v ∈ Vi+1, a new virtual vertex

v′ with label v and a virtual edge (u,v′) are introduced into Hi. Note that

there may be several virtual vertices with the same label, each with exactly one

entering edge. The extension of T(Gi) to T(Hi) is called the vertex addition

step and is accomplished by the PQ-tree operation REPLACE. For each vertex
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Algorithm 7.1. LEVEL-PLANARITY-TEST

Input: A level graph G = (V1
.
∪ V2

.
∪ . . .

.
∪ Vk, E,φ)

Output: A Boolean value indicating whether G is level planar

begin1

Initialize T(G1)2

for i← 1 to k− 1 do3

T(Gi+1)← CHECK-LEVEL(T(Gi), Vi+1)4

if T(Gi+1) = ∅ then5

return false6

return true7

end8

u on level i, the subtrees containing the leaves with label u are replaced by a

P-node with new leaves for the adjacent vertices on the next level. Thereafter,

using the PQ-tree operation REDUCE all PQ-leaves representing vertices in Vi+1

with the same label are reduced to appear as a consecutive sequence in any

permutation stored in the PQ-tree. The resulting reduced extended form of Hi
is denoted by Ri. Finally, all PQ-leaves representing sinks v in Vi+1 are removed

from the PQ-tree and the tree is reconstructed such that it obeys the properties

of a valid PQ-tree again.

Algorithm 7.2. CHECK-LEVEL
Input: PQ-tree T(Gi) of the current level, Vertices Vi+1 of the next level
Output: PQ-tree T(Gi+1) of the next level

begin1

extend T(Gi) to T(Hi)2

reduce T(Hi) to T(Ri)3

if T(Ri) = ∅ then4

return T(Gi+1)←∅5

remove sinks from T(Ri)6

return T(Gi+1)← T(Ri)7

end8

7.1.4 Clustered Planarity

Planarity has also been investigated for clustered graphs. A clustered graph is

clustered planar or c-planar, if it has a drawing without edge crossings, region
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intersections, or crossings between an edge and a region. An edge crosses a

region if it crosses its border at least twice, see Figure 7.4.

(a) Edge crossings (b) Intersecting clusters

(c) Edges entering a cluster
and leaving again

(d) Edges leaving a cluster and
entering again

Figure 7.4. Forbidden situations in c-planar embeddings

In contrast to planarity and level planarity, c-planarity testing seems to be

more difficult. Obviously, c-planarity of a clustered graph implies planarity of

the underlying graph, but not vice versa. Here connectivity plays a crucial role.

A clustered graph is c-connected, if each subgraph induced by a cluster is con-

nected. For c-connected clustered graphs there is an algorithm by Feng, Cohen,

and Eades [88] that tests c-planarity in quadratic time. This algorithm tests

planarity of the contents of each cluster using a variant of the LEC algorithm.

It starts with a cluster that is a leaf in the cluster tree and therefore does not

contain other clusters. After the cluster has been tested, the resulting PQ-tree

represents the admissible permutations of the edges leaving the cluster. This

PQ-tree is then converted to a graph that encodes the same permutations by

representing all Q-nodes with wheel subgraphs, see Figure 7.5. The cluster is

then replaced by this graph, leading to a new graph that is c-planar if and only

if the original graph was c-planar. The remaining clusters are processed in the

same way, traversing the cluster tree bottom up.

Later, Dahlhaus [45] improved the algorithm of Feng, Cohen, and Eades to

linear time. Gutwenger et al. [108] give a polynomial time algorithm for a some-
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(a) In the resulting PQ-tree of a cluster. . .

(b) . . . Q-nodes are converted to wheel subgraphs

Figure 7.5. Testing c-planarity

what larger class of clustered graphs. Cornelsen and Wagner [44] introduce a

stronger form of connectivity for clustered graphs: A clustered graph is com-

pletely connected, if every cluster and each complement of a cluster induces a

connected subgraph. They show that a completely connected clustered graph

is c-planar if and only if the underlying graph is planar. For general clustered

graphs, however, the complexity of c-planarity testing is still open [19]. Finally,

di Battista, Didimo and Marcandalli give a planarization algorithm for clustered

graphs [53].

7.2 Clustered Level Planarity Testing

We will now investigate planarity for clustered level graphs by combining and

extending known results about planarity for graphs, level graphs and clustered

graphs. We focus in particular on a new testing algorithm for clustered level

planarity.

Remember that a clustered level graph is clustered level planar if it has

a clustered level planar embedding, i. e., a level embedding, that satisfies the

cluster/level, cluster/cluster, edge/edge, and cluster/edge restrictions, see De-

finition 4.13 on page 47. The restrictions ensure that any clustered level planar

graph can be drawn without crossings such that all cluster regions are convex.



92 Chapter 7. Clustered Level Planarity

They can even be drawn as rectangles by using Sander’s algorithm [195–197].

Clustered level planarity is the combination of level planarity and c-planarity.

Lemma 7.1. If G = (V , E,C, I,φ) is a clustered k-level graph, then obviously

1. G is clustered level planar ⇒ (V , E,φ) is level planar ⇒ (V , E) is planar.

2. G is clustered level planar ⇒ (V , E,C, I) is c-planar ⇒ (V , E) is planar.

Note that a level planar and c-planar clustered level graph is not necessarily

clustered level planar. The graph in Figure 7.6 is a counter-example. It cannot

be drawn with all conditions of a clustered level planar embedding satisfied

simultaneously. Either the embedding is level planar and the cluster/level re-

striction is violated, or the embedding is convex c-planar, but it is no level

embedding.

Without loss of generality we only consider simple graphs without self loops

and parallel edges. Because of Lemma 7.1, a simple input graph with |E| >
3|V | − 6 is rejected as not clustered level planar and we can assume that the

number of edges is linear in the number of vertices.

We give an O(k|V |) time algorithm for testing clustered level planarity of

a large class of clustered k-level graphs, which we call elementary clustered

k-level graphs. The restrictions of our algorithm are inherited from the under-

lying level planarity testing algorithm. The algorithms for testing level planarity

of arbitrary level graphs cannot be easily extended for testing clustered level

planarity. For example, see Section 7.4 for a description of why the JLM al-

gorithm does not work for clusters. Therefore, our algorithm is based on the

work of di Battista and Nardelli [56], and has similar restrictions on the input

graphs. Both algorithms only work on proper clustered level graphs with a sin-

gle source vertex. Similar to the c-planarity testing algorithm of Feng et al. [88],

clusters with disconnected contents are also difficult to handle in clustered

level graphs. Thus, similar restrictions are imposed. Instead of c-connectivity,

however, a weaker form of connectivity is sufficient for clustered level graphs,

which we call level connectivity:

Definition 7.1 (Level Connectivity). A clustered level graph G = (V , E,C, I,φ) is

level connected, if any two consecutive levels of the same cluster are spanned by

an edge of the cluster, i. e., if∀c ∈ C : ∀i ∈ {φmin(c), . . . ,φmax(c)−1} : ∃(u,v) ∈
Ec : φ(u) ≤ i∧φ(v) ≥ i+ 1.

Level connectivity follows directly from c-connectivity. Every c-connected

clustered level graph is level connected. The reverse direction is not gener-

ally true. Level connected clustered level graph need not be c-connected. See

Figure 7.7 for a comparison of level connectivity and c-connectivity.
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(a) A non-planar clustered level embedding

(b) A level planar embedding . . . (c) . . . which violates the cluster/level re-
striction

(d) A c-planar embedding . . . (e) . . . which is no level embedding

Figure 7.6. A clustered level graph that is level planar and c-planar but not
clustered level planar

Figure 7.7. A level connected clustered level graph that ist not c-connected
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Using the above descriptions of the restrictions, we define an elementary

clustered level graph as follows:

Definition 7.2 (Elementary Clustered Level Graph). A simple clustered k-level

graph is elementary if it is proper, level connected, and has only a single source

vertex.

7.2.1 Idea

The algorithm of di Battista and Nardelli already ensures that the computed

embedding satisfies the edge/edge restriction. It remains to show how the addi-

tional restrictions for clustered level planar embeddings can be maintained. We

will see later that the cluster/cluster and cluster/edge restrictions are automat-

ically satisfied if the graph is level connected, while an extension is necessary

for the cluster/level restriction.

An analysis of the cluster/level restriction reveals a similarity to the order-

ing constraints of PQ-trees because the vertices of a cluster have to be placed

next to each other. This corresponds directly to the semantics of the REDUCE

operation which restricts the set of admissible permutations to those where

the PQ-leaves given as an argument appear consecutively. We obtain the fol-

lowing idea: The level by level sweep of the level planarity testing algorithm

remains the same. The admissible permutations are stored in a PQ-tree T(Gi).
We ensure the cluster/level restriction by additional applications of REDUCE.

This is done by an extension of CHECK-LEVEL, see Algorithm 7.3. On each level

a new method REDUCE-CLUSTERS is called, which ensures that the interior of

each cluster is consecutive. Given a PQ-tree that encodes a set of permutations,

the REDUCE-CLUSTERS operation removes all permutations that contradict the

cluster/level restriction.

Note that this extension is designed to retain all invariants of the original

algorithm. The main invariant is that T(Gi) represents the set of currently ad-

missible vertex permutations. This does not change with the extension of the

algorithm, just the definition of “admissible” is changed. Only a subset of the

previously admissible permutations is admissible now. Because no new per-

mutations are introduced, this does not harm the correctness of the algorithm.

The exact set of currently admissible permutations is insignificant. It is only

important that it reflects the property for which the graph ist tested, and that

it is correctly stored in a PQ-tree. In effect, the extended algorithm returns

true if and only if the given graph is level planar and satisfies the cluster/level

restriction.
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Algorithm 7.3. EXTENDED-CHECK-LEVEL
Input: PQ-tree T(Gi) of the current level, Vertices Vi+1 of the next level
Output: PQ-tree T(Gi+1) of the next level

begin1

extend T(Gi) to T(Hi)2

reduce T(Hi) to T(Ri)3

if T(Ri) = ∅ then4

return T(Gi+1)←∅5

T(Ri)← REDUCE-CLUSTERS(T(Ri), Vi+1) // new6

remove sinks from T(Ri)7

return T(Gi+1)← T(Ri)8

end9

7.2.2 Efficient Cluster Reduction

A straightforward implementation of the REDUCE-CLUSTERS method is to call

REDUCE for the PQ-leaves of each cluster. This leads to a running time of

O(k|C||V |), i. e., up to O(k|V |2), since for each of the k levels and for each of

the |C| clusters the whole PQ-tree of size O(|V |) must be traversed. With the

following approach this can be improved to O(k|V |) time.

First consider only two clusters c1 and c2 on the same level. There are two

cases how c1 and c2 can interact, either they are disjoint or they are nested.

In the former case c1 and c2 can be reduced independently. For each cluster

only a subtree of the PQ-tree has to be considered. Because these subtrees are

disjoint, in the worst case the whole PQ-tree has to be traversed once per level.

In the latter case suppose that c2 is nested in c1. Then all descendants of c2 are

descendants of c1 and the result of reducing c2 can be used for reducing c1. It

is not necessary to traverse the pertinent subtree of c2 again but we can start

the second REDUCE at the pertinent root of c2.

This result can be generalized to the whole cluster tree by using a simulta-

neous bottom up traversal of the cluster tree Γ and the PQ-tree T(Ri). After

a cluster c has been reduced, all PQ-leaves representing vertices contained in

c are consecutive in any permutation stored in T(Ri). They are exactly the

leaves of a pertinent subtree. The pertinent root of this subtree can be a single

node or a consecutive part of a Q-node, see Figure 7.8. We temporarily replace

the pertinent subtree(s) by a new PQ-leaf Xc with label c. This avoids calling

REDUCE for inner PQ-nodes which may not be supported by existing PQ-tree

implementations. It is important that the replaced subtrees are reinserted later
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in the same order as they had before their removal. Reversions of their parent

Q-node and other modifications have to be respected. Fortunately this can be

done easily by remembering which sibling pointer of Xc represents the direc-

tion, w. l. o. g. the first stored pointer. This is similar to the direction indicators

of [38].

Algorithm 7.4 shows the method REDUCE-CLUSTERS. The cluster tree Γ is

traversed in a similar way as the REDUCE method traverses a PQ-tree. The

cluster nodes are processed bottom up using a queue to ensure that nodes

cannot be processed before all of their children that span the current level have

been processed. This can be tested by comparing the number of processed

children with child_count(c, i + 1), the number of children of c spanning level

i+ 1.

7.2.3 Computing an Embedding

For computing a planar drawing of a clustered level planar graph, it is not suffi-

cient to know about the existence of an embedding. We also need an algorithm

for computing the embedding. Fortunately, our algorithm for clustered level

planarity testing can easily be extended to an clustered level embedding algo-

rithm that also runs in O(k|V |) time. The presented extensions to the level pla-

narity testing algorithm of di Battista and Nardelli can be used without major

modifications to extend the level planar embedding part of the JLM algorithm

[116, 117, 129–131] to compute a clustered level planar embedding. The com-

puted embedding can then be used as a basis for generating a drawing, e. g.,

with the algorithm of Sander [195–197].

7.3 Theoretical Analysis

7.3.1 Correctness

Theorem 7.1. Algorithm 7.1 with the EXTENDED-CHECK-LEVEL method shown

in Algorithm 7.3 returns true if and only if the graph is clustered level planar.

Proof. For the only if direction note that our extension does not modify the

level planarity testing part of the algorithm, and it does not introduce any new

level permutations. Any admissible permutation stored in the PQ-tree at a time

also exists in the unmodified algorithm. Therefore, a positive result of our al-

gorithm ensures that G is level planar. Thus, it remains to be shown that the

remaining restrictions imposed by the definition of clustered level planarity are

satisfied. The semantics of the cluster/level restriction for the intersection of
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(a) Execute REDUCE with all leaves
for vertices contained in the cluster

(b) If the pertinent root has only
pertinent children. . .

(c) . . . replace the whole pertinent
subtree with Xc

(d) If the pertinent subtree(s) are a
subsequence of a Q-node. . .

(e) . . . replace the corresponding
children with Xc

(f) The result is a valid PQ-tree where
Xc represents the contents of c

Figure 7.8. Contracting pertinent subtrees
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Algorithm 7.4. REDUCE-CLUSTERS
Input: PQ-tree T(Ri), Vertices Vi+1 of the next level
Output: PQ-tree T(Ri) with reduced clusters

begin1

foreach c ∈ C ∪ V do2

children_leaves[c]←∅3

Initialize Queue Q with Vi+14

while Q not empty do5

c ← delete_first(Q)6

p ← parent(c) // parent in Γ7

// make cluster vertices consecutive8

T(Ri)← REDUCE(T(Ri), children_leaves[c])9

if T(Ri) = ∅ then10

return T(Ri)←∅11

// expand children12

foreach X ∈ children_leaves[c] do13

replace X by subtrees[X]14

// contract pertinent subtree(s)15

Xc ← new PQ-leaf with label c16

if the pertinent root has only pertinent children then17

subtrees[Xc]← {pertinent root}18

else19

subtrees[Xc]← pertinent children of the pertinent root20

REPLACE(T(Ri), children_leaves[c], Xc)21

insert(children_leaves[p],Xc)22

// ensure correct processing order23

if
∣∣children_leaves[p]

∣∣ = child_count(p, i+ 1) then24

insert(Q,p)25

return T(Ri)26

end27
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a cluster c ∈ C and a level line i are exactly the same as the semantics of a

REDUCE operation applied to the children of c on level i. Since our algorithm

explicitly calls REDUCE for every cluster on every level it is clear that the clus-

ter/level restriction is satisfied. The cluster/cluster restriction is trivially satis-

fied for level connected graphs, because crossing clusters would imply crossing

edges which are prohibited by the level planarity test. See Figure 7.9(a). The

same is true for the cluster/edge restriction. The graph is proper and thus

the crossing edge connects two adjacent levels. Between these two levels there

is an edge in the cluster because of the level connectivity of the graph. Any

intersection between these two edges is prohibited by level planarity. See Fig-

ure 7.9(b).

(a) Violation of the cluster/cluster
restriction is not possible

(b) Violation of the cluster/edge
restriction is not possible

Figure 7.9. Correctness of the algorithm

For the if direction consider a clustered level planar graph. We have to

show that our algorithm returns true. Suppose the algorithm returns false.

This means that a call of REDUCE failed, either in the level planarity test part

or in REDUCE-CLUSTERS. In the former case this means that for some level i+1

there is no permutation such that the edges between the levels i and i+ 1 can

be drawn without crossings. In the latter case there is no level planar permu-

tation respecting the cluster/level restriction. In any case this contradicts the

assumption. �

7.3.2 Complexity

The complexity of Algorithm 7.4 depends on the complexity of the child_count

operation returning the number of cluster children on a given level. We as-

sume that the used data structure for clustered level graphs provides O(1)
time access to this information. This can be achieved for example by main-

taining the level cluster trees or contracted level cluster trees as defined in

Chapter 4. If this information is not available, an additional O(k|V |) size data

structure can be pre-computed in O(k|V |) time. We use a two-dimensional

matrix Mci = child_count(c, i) with c ∈ C ∪ V and i ∈ {1, . . . , k} as indices.
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Mci is filled as shown in Algorithm 7.5 which traverses the cluster tree Γ in a

similar way as Algorithm 7.4. Having this efficient child_count operation, the

complexity of REDUCE-CLUSTERS derives as follows:

Algorithm 7.5. COMPUTE-CHILD-COUNT
Input: A clustered level graph G = (V , E,C, I,φ)
Output: A matrix Mci containing the child_count values

begin1

Initialize Mci with zeros2

foreach v ∈ V do Mv,φ(v) ← 13

foreach c ∈ C do processed_children[c]← 04

Initialize Queue Q with V5

while Q not empty do6

c ← delete_first(Q)7

p ← parent(c) // parent in Γ8

for i← 1 to k do9

if Mci > 0 then10

Mpi ← Mpi + 1 // increase child count if c spans level i11

processed_children[p]← processed_children[p]+ 112

if processed_children[p] = |children(p)| then13

insert(Q,p)14

foreach v ∈ V do Mv,φ(v) ← 015

return Mci16

end17

Lemma 7.2. The time complexity of REDUCE-CLUSTERS as described in Algo-

rithm 7.4 is O(|V |).

Proof. In REDUCE-CLUSTERS every cluster is considered exactly once. Since Γ is

of linear size this can be done in O(|V |) time. Additionally every node of the

PQ-tree is considered only once such that the time complexity of the REDUCE

operations sum up to O(|V |). �

Theorem 7.2. There is an O(k|V |) time algorithm for testing clustered level

planarity of elementary clustered level graphs.
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7.4 Open Problems

The given algorithm solves the clustered level planarity problem only for ele-

mentary clustered level graphs. It would be desirable to extend it to general

clustered level graphs, but a straightforward extension is difficult. In this sec-

tion we will describe, why this is the case.

Level planarity testing has been extended to graphs with multiple sources in

[129–131]. This is realized by the utilization of multiple PQ-trees, one for each

connected component of Gi. If a vertex is common to more than one PQ-tree,

these are merged into one. In a straightforward extension of our algorithm

clusters can span multiple PQ-trees. This means that REDUCE-CLUSTERS can-

not be applied directly. A possible solution would be to additionally merge the

PQ-trees according to the contained clusters. It is not clear, however, how this

could be done because in contrast to vertex merges there is no distinct position

in the higher PQ-tree where the smaller one must be inserted.

An application of our algorithm to non-proper graphs leads to problems

as well. A priori it is not clear whether long span edges entering or leaving

a cluster have to be routed within or outside of the cluster. In Figure 7.10

it is not clear whether the reduction of the cluster nodes on level 2 has to

include the dashed edge. When processing level 3 it becomes clear that this

edge has to be routed within the cluster, but this is too late. On level 2 both

routing alternatives would have to be stored in the PQ-tree. This is not possible,

however, without major extensions of the data structure.

Figure 7.10. Problems with long span edges

The third remaining restriction of our algorithm is level connectivity. A

straightforward idea to extend it to clustered level graphs that are not level

connected would be to insert level connecting dummy edges for each cluster.

It is difficult, however, to find the correct places for insertion without violating

clustered level planarity. In Figure 7.11, there is only one clustered level planar
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embedding up to reflection. To make it level connected without destroying the

planarity, an edge can only be inserted between the two grey vertices. This

is not known in advance, however, so all combinations of possible edges in

all clusters would have to be tried. This leads to exponential running time,

however. The same problem occurs with c-planarity. There are some advances

like in [108] but the general problem is unsolved. Apparently, the connectivity

of the graph plays a major role for the detection of c-planarity and clustered

level planarity.

Figure 7.11. Making a clustered level graph level connected is difficult



Perfection is achieved, not when there is nothing more to
add, but when there is nothing left to take away.

Antoine de Saint Exupery

8
Conclusion

After motivating and introducing clustered graphs and level graphs, we have

presented a comprehensive discussion of various problems that occur in clus-

tered level graphs, i. e., in graphs that are clustered and leveled simultaneously.

We have analyzed the interrelations between clusters and levels and their im-

pact on edge crossings and cluster/edge crossings. Several algorithms and

theoretical results have been presented. We have shown that clustered level

embeddings and planarity of such embeddings can be characterized by four

simple restrictions on the embedding. Further, we have shown that the prob-

lem of minimizing edge crossings and/or cluster/edge crossings is NP-hard for

clustered level graphs.

Then we have demonstrated a new method for the application of crossing

reduction heuristics to clustered level graphs. We have proven theoretically

as well as experimentally that our heuristic improves previous heuristics in

terms of crossings, with a negligible increase of running time. Our scheme

for extending one-sided two-level crossing reduction algorithms to clustered

level graphs is optimal in the sense that it does not introduce new unnecessary

crossings. For the clustered one-sided two-level crossing reduction problem

an optimal algorithm could be obtained by extending any optimal two-level

crossing reduction algorithm for level graphs.

Afterwards, we analyzed the constrained one-sided two-level crossing re-

duction problem that occurred as a subproblem of clustered crossing reduc-

tion. We developed a new algorithm based on the barycenter heuristic that is
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fast and simple and has good quality as well. This algorithm leads to fewer

crossings then previous simple extensions of one-sided two-level crossing re-

duction algorithms for constraints. It runs in quadratic time and is significantly

faster than existing more complex heuristics, while in practice it delivers nearly

the same quality. For further improvement, it would be desirable to reduce the

running time of the algorithm to less than quadratic time. For this a more

efficient traversal of violated constraints would be helpful.

Finally, we have investigated the new problem of clustered level planarity.

We have presented a new algorithm for planarity testing of elementary clus-

tered k-level graphs that runs in O(k|V |) time. Our algorithm also delivers a

clustered level planar embedding, if one exists. Further investigations are de-

sired for level graphs which are not elementary. It is not clear if this problem

can be solved in polynomial time.
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