
Crossing Reduction for Hierarchical Graphs
with Intra-Level Edges

Technical Report MIP-0608
July, 2006

Christian Bachmaier and Michael Forster

University of Passau, Germany
94030 Passau, Germany
Fax: +49 851 509 3032

{bachmaier,forster}@fmi.uni-passau.de

Abstract. In drawings of hierarchical graphs generated by the conven-
tional Sugiyama framework the vertices are positioned on multiple hor-
izontal level lines. This drawing style which allows edges only between
vertices on different levels is well suited for the visualization of a common
direction of flow from lower to higher levels in a graph.
In this paper we are interested in reordering the vertices on each level
line to increase readability of the drawing, i. e., in reducing the num-
ber of edge crossings. As novelty, we additionally allow the existence of
edges with both end vertices on a common level, which often occur in
practice. Experimentally we found out, that we can save about 30% of
the crossings compared to the existing standard heuristic which ignores
those edges.

1 Introduction

In hierarchical graph layout vertices are usually drawn on parallel horizontal
lines, and edges are drawn as strict y-monotone polylines that may bend when
they intersect a level line. The standard drawing framework [12] consists of
four phases: cycle removal (reverses appropriate edges to eliminate cycles), level
assignment (assigns vertices to levels such that no edge has both end vertices on
the same level and introduces dummy vertices to represent edge bends), crossing
reduction (permutes vertices on the levels), and coordinate assignment (assigns
x-coordinates to vertices, y-coordinates are implicit through the levels). See [7]
for an extended overview.

In this paper we are especially interested in the crossing reduction phase
to improve readability [10] of the drawing. As novelty we allow the existence
of horizontal edges having both end vertices on a common level and take their
crossings into account. This type of level graphs often occurs in practice: for
example graphs were the level assignment is already predefined, e. g., by breadth
first search (BFS) levels to express distances, or social network graphs [2–4]

2 C. Bachmaier, M. Forster

where the importance (centrality) of an actor (modeled by a vertex) defines its
level.

Preferably we want to draw all edges as straight lines. But at least with
vertices having more than two adjacent horizontal edges this is not possible,
unless we allowed overlapping of edges and crossings between vertices and edges.
To avoid this, cf. Fig. 1, we draw horizontal edges as semicircles with different
radii. Further we restrict ourselves to draw the semicircles only above the level
lines and not below, what practically makes it easier to attack the problem. Since
this leads to three kinds of crossings, our idea is to treat them separately with a
standard sifting heuristic, with circular crossing reduction, and a new counting
algorithm. Since all three algorithms are some kind of sifting, we interlock them
all in a new integrated sifting heuristic.

1

2

0 21 3 4

5 7 86 9

3 121110 13

Fig. 1. Level graph example illustrating drawing conventions

This paper is organized as follows: After some necessary preliminaries show-
ing existing algorithms in Sect. 2 we explain in Sect. 3 how to extend sifting also
to count crossings generated by horizontal edges.

2 Preliminaries

A k-level graph G = (V,E, φ) is a graph with a level assignment φ : V →
{1, 2, . . . , k}, which partitions the vertex set into k ≤ |V | pairwise disjoint sub-
sets V = V1

.
∪ V2

.
∪ · · ·

.
∪ Vk, Vi = φ−1(i), 1 ≤ i ≤ k, such that |φ(u)− φ(v)| = 1

for each vertical edge {u, v} ∈ E. Particularly, k = 1 implies that E = ∅. For
v ∈ V with φ(v) > 1 let E(v) = { {u, v} ∈ E | u ∈ Vi−1 } be the (predecessor)
vertical adjacency list. Define E(v) = ∅, if φ(v) = 1. An ordering of a proper
level graph is a partial order ≺ of V such that u ≺ v or v ≺ u iff φ(u) = φ(v) for
each pair of vertices u, v ∈ V . If the vertex sets Vi are ordered sets (according
to ≺), we call G an ordered level graph.

Crossing Reduction with Intra-Level Edges 3

2.1 Sifting with a Crossing Matrix

The most common technique for crossing reduction in level graphs is to only
consider two consecutive levels at a time in multiple top-down and bottom-up
passes. Starting with an arbitrary ordering of the first level, subsequently the
ordering of one level is fixed, while the next one is reordered to minimize the
number of crossings in-between. This one-sided two-level crossing reduction prob-
lem is NP-hard [6] and well-studied: Given a 2-level graph G = (V1

.
∪ V2, E, φ)

where V1 is the set with the fixed ordering, the objective is to compute an or-
dering of the second level V2 which causes fewest crossings. As not mentioned
otherwise, we restrict ourselves to one-sided two-level crossing reduction in the
following.

To face the problem, we use the sifting heuristic here, which is slower than
simple heuristics like barycenter or median heuristics [7] but generates less cross-
ings. Barycenter (median) heuristic assigns each vertex of V2 the barycenter
(median) value of its neighbors in V1, assuming the positions of vertices in V1

are numbered from 1 to |V1| according to ≺. A sorting according to this values
defines the ordering among the vertices in V2. Sifting was originally introduced
as a heuristic for vertex minimization in ordered binary decision diagrams [11]
and later adapted for the one-sided crossing minimization problem [9]. The idea
is to keep track of the objective function while moving in a sifting step a vertex
u ∈ V2 along a fixed ordering of all other vertices in V2 and then placing u to its
locally optimal position. The method is thus an extension of the greedy-switch
heuristic [5], where u is swapped iteratively with its successor. We call a single
swap a sifting swap. Executing a sifting step for every vertex in V2 is called
a sifting round. For crossing reduction the objective function is the number of
crossings between the edges incident to the vertex under consideration and all
other edges. The efficient computation of the crossing count in sifting is based
on the crossing matrix. Its |V2|2 entries correspond to the number of crossings
caused by (the edges of) pairs of vertices in a particular relative ordering and
can be computed as a preprocessing step in O(|E|2) [13,14]. Whenever a vertex
is placed to a new position, only a smallish number of updates is necessary which
allows a running time of O(|V2|2) for one round. Usually only few sifting rounds
(3 – 5 for reasonable problem instances) are necessary to reach a local optimum
for all vertices simultaneously. Thereby the largest reduction of crossings usually
occurs in the first round.

2.2 Circular Sifting

However, the asymptotic overall running time of the algorithm described above is
O(|E|2+|V2|2) and too high for our purposes. Thus we apply the heuristic of Baur
and Brandes [1] originally used for the NP-hard [8] circular crossing reduction
problem: Reorder the vertices V of a graph G = (V,E) which all are placed on
a single circle (e. g., in Fig. 3) to minimize the number of crossings among the
straight-line edges in E. Since there is no “circular” ordering, Baur and Brandes
define linear orders ≺α by selecting a reference vertex α ∈ V which is the first of

4 C. Bachmaier, M. Forster

the (here counter-clockwise) sequence. For finding the locally optimal position
for a vertex u ∈ V in a sifting step it is sufficient to record the change in crossing
count while swapping u with its successor v. This can be done by considering
only edges incident to u or v: After a swap exactly those pairs of these edges
cross which did not before. All other crossings remain unchanged (let χ(π) be
the number of crossings of a drawing π and N(u) be the set of adjacent vertices
of u ∈ V):

Lemma 1 (Baur, Brandes). Let u ≺u vp ∈ V be consecutive vertices in a
circular layout π and let π′ be the layout with their positions swapped, then

χ(π′) = χ(π)−
∑

x∈N(u)

|{ y ∈ N(vp) | y ≺π
x u }|+

∑
y∈N(vp)

|{x ∈ N(u) | x ≺π′

y vp }| .

At the end of one step, u is placed where the intermediary crossing counts
reached their minimum. For efficiency reasons the computation of the change in
crossing count is implemented over suffix lengths in ordered adjacency lists.

We adapt the above idea to one-sided two-level crossing reduction, which we
call vertical sifting for simplicity. We mainly exchange ≺α by ≺ as illustrated in
Algorithms 1, 2, and 3 and thus consider the ordering of the neighbors on the
fixed level 1. We obtain the same results as with the matrix method, however,
without knowing the absolute crossing numbers. Since all three methods are
generic and also fit for the following algorithms, Algorithm 2 already contains
lines 4 and 8. But up to now these lines can be ignored and the input graphs
should be considered as G = (V1

.
∪ V2, E, φ) for ease of understanding. For

efficiency reasons all shown operations should be implemented in place on the
graph data structure.

Algorithm 1: SIFTING-ROUND
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ)

Output: Updated ordering of V2

foreach u ∈ V2 do1
V2 ← SIFTING-STEP(G, u)2

return V23

3 Reduction with Horizontal Edges

An extended k-level graph G = (V,E,H, φ) is a k-level graph (V,E, φ) which
additionally has horizontal edges {u, v} ∈ H with φ(u) = φ(v). For v ∈ Vi

let Hl(v) = { {u, v} ∈ H | u ≺ v } be the left horizontal adjacency list and
Hr(v) = { {v, w} ∈ H | v ≺ w } be the right horizontal adjacency list.

Crossing Reduction with Intra-Level Edges 5

Algorithm 2: SIFTING-STEP
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ), Vertex u ∈ V2 to sift

Output: Updated ordering of V2

let v0 = u ≺ v1 ≺ · · · ≺ v|V2|−1 denote the current ordering of V21
foreach v ∈ V2 do2

Sort E(v) ⊆ E by ascending ordering of V1 in O(|E|) time3
Sort Hl(v), Hr(v) ⊆ H by ascending ordering of V2 in O(|H|) time4

χ← 0; χ∗ ← 0 // current and best number of crossings5
p∗ ← 0 // best vertex position6
for p← 1 to |V2| − 1 do7

l← UPDATE-HORIZ-ADJ(G, u, vp)8
χ← χ+SIFTING-SWAP-V(G, u, vp)9
if χ < χ∗ then10

χ∗ = χ11
p∗ = p12

return V2 ← v1 ≺ · · · ≺ vp∗−1 ≺ u ≺ vp∗ ≺ · · · ≺ v|V2|−113

Algorithm 3: SIFTING-SWAP-V
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ), Swap vertices u, vp ∈ V2

Output: Change in crossing count
let x0 ≺ · · · ≺ xr−1 be the neighbors of u in V1, {xi, u} ∈ E1
let y0 ≺ · · · ≺ ys−1 be the neighbors of vpin V1, {yj , vp} ∈ E2
c← 0; i← 0; j ← 03
while i < r and j < s do4

if xi ≺ yj then5
c← c + (s− j)6
i← i + 17

else if yj ≺ xi then8
c← c− (r − i)9
j ← j + 110

else11
c← c + (s− j)− (r − i)12
i← i + 1; j ← j + 113

return c14

6 C. Bachmaier, M. Forster

The one-sided two-level crossing reduction problem on an extended 2-level
graph is NP-hard too, since at least two subproblems, considering only the ver-
tical edges [6] and considering only the horizontal edges [8] are NP-hard as well.
As a consequence, we use extensions of the sifting heuristic for an efficient solu-
tion of the problem. To provide a better overview, we first outline the reduction
of different crossing types separately.

3.1 Crossings Between Horizontal Edges

We consider overlapping horizontal edges {v1, v4}, {v2, v3} ∈ H with v1 ≺ v2 ≺
v3 ≺ v4 (also if v1 = v2 and/or v3 = v4) as not crossing, since we draw them
as circular arcs without any crossing (except common end points) instead of
straight horizontal lines: For an edge {u, v} ∈ H we use a quadratic spline
with an amplitude, i. e., the height of the only control point, raising with the
number of vertices between u and v in the given ordering ≺ of V2. Thereby we
take care not to introduce unnecessary “double” crossings between horizontal
and vertical edges by restricting the maximum edge amplitude according to the
dimension of the drawing. For example, if the edge {5, 8} in Fig. 2(a) would have
a higher amplitude, it would cross the edge {5, 4}. Note that we require to draw
all horizontal edges completely above the second level line, as will be explained
later in Sect. 3.2.

1

2

0 21 3 4

5 7 86 9

(a) Before crossing reduction

1

2

0 21 3 4

56 97 8

(b) After crossing reduction

Fig. 2. The first 2 levels of Fig. 1

A straightforward solution to the horizontal crossing reduction problem is the
introduction of dummy levels which contain an artificial dummy vertex splitting
each horizontal edge. Then, in worst case, the amplitudes of the edges may be
pairwise different, what leads up to |H| different dummy levels. As a consequence
– to be able to run later a 2-level crossing reduction algorithm which considers
all type of crossings – each vertical edge must be split in |H|+1 segments by |H|
new dummy vertices. This prevents not only time efficient processing, but also is
obstructive to get a good result, i. e., less crossings, since each of the additionally
necessary |H| crossing reduction rounds is a heuristic only and thus not exact.

Crossing Reduction with Intra-Level Edges 7

Thus for horizontal sifting we again decided to take the circular sifting algo-
rithm of [1] already used for crossing reduction among vertical edges in Sect. 2.2.
Considering the horizontal line of level 2 bent to a circle (see Fig. 3), the circular
crossing reduction algorithm fits “out of the box”: For one round call Algorithm 1
with line 9 of Algorithm 2 updated to call Algorithm 4 instead of Algorithm 3.
Line 3 of Algorithm 2 can be left away in this case. Principally, Algorithm 4
is the same as Algorithm 3 except that the neighbors are on level 2 and the
ordering ≺ is replaced by ≺vp

, i. e., the ordering of V2 is different in each swap!

2 5

7

8

6

9

(a) Before

2 6

5

7

8

9

(b) After

Fig. 3. Circular crossing reduction for horizontal edges for the graph in Fig. 2

With Algorithm 5 we keep the ordered horizontal adjacencies of vertex u up
to date during a sifting step. Thus we know the ordering ≺vp among u’s neigh-
bors, since this is nothing else than the concatenation of Hr(u) and Hl(u) (in
this order). Therefore we need no reordering for determining the xis per swap.
The same holds for the yis: Algorithm 5 also updates the horizontal adjacen-
cies of vertex vp, but does in contrast to u not maintain their ordering due to
performance restrictions. But we rely on the fact, that an edge h = {u, vp} is
always the first of Hl(vp). This is true, since we build up the sorting of this ad-
jacency list right after u was put on the first position of V2 in Algorithm 2 and
then there never was an update to this ordering. In other words, the ordering
of the horizontal adjacencies of all vertices vp is valid throughout the complete
sifting step besides obsolete positions of edges {u, vp}. However, this exceptions
are irrelevant for the determination of the orderings of the yis, since they never
contain u.

3.2 Crossings Between Vertical and Horizontal Edges

We restrict horizontal edges only to be routed above the second level line. Oth-
erwise, if we allowed routing on both sides simultaneously, the number of cross-
ings between vertical and horizontal edges would depend on the vertical edges

8 C. Bachmaier, M. Forster

Algorithm 4: SIFTING-SWAP-H
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ), Swap vertices u, vp ∈ V2

Output: Change in crossing count
let x0 ≺vp · · · ≺vp xr−1 be the neighbors of u in V2 − {vp}, {xi, u} ∈ H1
let y0 ≺vp · · · ≺vp ys−1 be the neighbors of vp in V2 − {u}, {yj , vp} ∈ H2

c← 0; i← 0; j ← 03
while i < r and j < s do4

if xi ≺vp yj then5
c← c− (s− j)6
i← i + 17

else if yj ≺vp xi then8
c← c + (r − i)9
j ← j + 110

else11
c← c− (s− j) + (r − i)12
i← i + 1; j ← j + 113

return c14

Algorithm 5: UPDATE-HORIZ-ADJ
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ), Swap vertices u, vp ∈ V2

Output: Number of edges between u and vp, Updated Hl(u), Hr(u), Hl(vp),
and Hr(vp) as side effect

l← 0 // number of short horizontal edges1
while {u, vp} = getF irst(Hr(u)) ∈ H do2

h← removeFirst(Hr(u))3
append(Hl(u), h)4
removeFirst(Hl(vp)) // first, since never updated before5
prepend(Hr(vp), h)6
l← l + 17

return l8

Crossing Reduction with Intra-Level Edges 9

to vertices on a third level, which contradicts the pairwise level by level sweep
approach.

Like in the above algorithms, swapping vertex u with its successor vp changes
only crossings (here among vertical and horizontal edges) between edges incident
to u or vp. Thus for computing the change in the crossing count we only need
the sizes of the six sets Hl(v), Hr(v), E(v) with v ∈ {u, vp}, cf. Fig. 4.

E()vpE()u

Hl()u
h vpu

H ()r u

H ()vpr

H()vpl

(a) Before swap

h

H ()r uH()vpl

E()uE()vp

uvp

H ()vprHl()u

(b) After swap

Fig. 4. Crossings among horizontal and vertical edges

Neglecting potentially existing edges h = {u, vp} ∈ H which are a non con-
tributing special case, we obtain (1) as change in crossing count when swapping
u and vp. The correctness follows again from the invariant that after a swap
exactly those pairs of horizontal (except h) and vertical edges cross which did
not before.

(|Hr(vp)| − |Hl(vp)|) · |E(u)|+ (|Hl(u)| − |Hr(u)|) · |E(vp)| (1)

Thus for mixed sifting a complete round can be started by calling Algorithm 1
and updating line 9 of Algorithm 2 to call Algorithm 6. Line 3 of Algorithm 2
needs not to be executed here. Please note that the horizontal adjacency updates
caused by a swap are done prior to a call of Algorithm 6. Thus l has now to be
subtracted from Hl(u) and Hr(vp) instead of Hr(u) and Hl(vp).

Algorithm 6: SIFTING-SWAP-HV
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ), Swap vertices

u, vp ∈ V2, Number of short edges l = |{{u, vp} ∈ H}|
Output: Change in crossing count
return ((|Hr(vp)| − l)− |Hl(vp)|) · |E(u)|+1

((|Hl(u)| − l)− |Hr(u)|) · |E(vp)|2

10 C. Bachmaier, M. Forster

3.3 All Crossings

The modular design of the above algorithms now pay off: For extended sifting
we call Algorithm 1 with an updated line 9 of Algorithm 2 in order to call
Algorithm 7, where we simply add the three independent changes in crossing
counts. However, other formulas preferring some type of crossings at the expense
of more crossings of other types are possible, e. g., the usage of weighting factors.

Algorithm 7: SIFTING-SWAP-EXT
Input: Ordered two level graph G = (V1

.
∪ V2, E, H, φ), Swap vertices u, vp ∈ V2

Output: Change in crossing count
c1 ← SIFTING-SWAP-V(G, u, vp)1
c2 ← SIFTING-SWAP-H(G, u, vp)2
c3 ← SIFTING-SWAP-HV(G, u, vp)3
return c1 + c2 + c34

Theorem 1 shows, that we obtain the same time bound as sifting for a graph
G = (V,E, φ) considering only vertical edges or for a graph G = (V,H) consid-
ering only horizontal edges.

Theorem 1. One round of extended one-sided sifting on an extended 2-level
graph G = (V,E, H, φ) needs O(|V | · (|E|+ |H|)) time.

Proof. For running time calculations, we assume w. l. o. g. that there are no iso-
lated vertices. They can be removed in preprocessing step and added again in
postprocessing since their positions have no influence on the crossing number.

One round of vertical resp. horizontal sifting needs O(|V ||E|) resp. O(|V ||H|)
time according to Theorem 3 of [1]. One round of mixed sifting needs O(|V ||H|)
time, since one step needs O(|H|) time: The initial sorting of the horizontal
adjacency in Algorithm 2 can be done in O(|H|) by traversing the vertices of V2

in order and adding each to the adjacency list of its right/left neighbors. One of
the |V2| sifting swaps needs constant time.

The interlocked execution is possible, since the only updates to the horizontal
adjacency list are done by Algorithm 2, thus the algorithms mutually don’t bias.

ut

3.4 Sweep over all Levels

According to our experience, the quality of sifting does not depend much on the
quality of the initial vertex ordering. However, a “bad” initialization raises the
number of needed sifting rounds and thus the absolute running time. Thus it
maybe useful to apply at least some rounds of horizontal sifting to V1 to get a
practical initial ordering.

Crossing Reduction with Intra-Level Edges 11

In the top-down sweep we reorder the levels i from 2 to k by consecutively
applying our extended one-sided two-level crossings reduction on the fix ordered
set Vi−1 and on the permutable set Vi. In the subsequent bottom-up sweep we
reorder the levels i from k− 1 down to 1 by consecutively applying the two-level
algorithm on the fix ordered set Vi+1 and the permutable set Vi. But bottom-up
we have a different situation, since the horizontal edges are below the current
level i and cross edges from level i and i−1, see Fig. 5 for an example. However,
the formula for crossings of horizontal and vertical edges (1) does not depend on
any vertex ordering different to that on level i and especially does not depend
on that of level i − 1. Thus we count the change in the number of crossings of
the horizontal edges of level i with the vertical edges between level i and i − 1
during a swap. For this we let for every v ∈ Vi be E(v) = { (x, v) | x ∈ Vi−1 }
instead of { (y, v) | y ∈ Vi+1 } in Algorithm 6, which then does nothing else than
it does when executed during a top-down sweep. After some iterations, say 10,
of top-down with subsequent bottom-up sweeps the algorithm terminates.

3

2

1

1211

5 76 9

4320 1

10 13

8

Fig. 5. Bottom-up sweep for the graph in Fig. 1

4 Experimental Results

To analyse the performance of one sifting round of our one-sided two-level
crossing reduction heuristics, we have implemented them in Java. Further, we
have realized the corresponding standard sifting algorithm which uses a cross-
ing matrix to compare its practical running time with the sifting algorithm
of [1]. We have tested the implementations using a total number of 13750 ran-
dom graphs: 25 graphs for each combination of the parameters |V1| = |V2| ∈
{50, 100, 150, . . . , 1100}, |E|/|V2| ∈ {1, . . . , 5}, and |H|/|V2| ∈ {1, . . . , 5}.

Figure 7 and 8 confirms that it makes sense to consider all types of crossings
simultaneously, since the algorithm generates (as expected) fewer crossings than
standard sifting, experimentally by a factor of 0.7. This is a very encouraging
result, since the differences in absolute running times between our extending

12 C. Bachmaier, M. Forster

sifting and the existing standard vertical sifting and horizontal sifting, i. e., the
running time of mixed sifting, are negligible in practice even on larger graphs,
see Fig. 6. Just to give a feeling, e. g., the running time of extended sifting on a
graph with |V1| = |V1| = |E| = |H| = 104 is about 13 minutes.

5 Conclusion

We extended the well known sifting heuristic for crossing reduction to extended
level graphs. Ignoring self loops which do not affect the crossing number, our
algorithm works out of the box also on multi graphs within the same time com-
plexity.

As far we only use a random initial ordering of the vertices, but the quality
of the ordering produced by extended sifting is not independent of the quality of
the initial orderings of all levels. Thus it may be helpful to use some extensions
of fast and simple heuristics, e. g., barycenter or median [7] heuristics, to reduce
the crossing count of the input.

Future research on this topic can be heuristics, which use the freedom of
routing horizontal edges above and below their level line and not restricting
them to one side.

References

[1] M. Baur and U. Brandes. Crossing reduction in circular layout. In J. Hromkovic,
M. Nagl, and B. Westfechtel, editors, Proc. Workshop on Graph-Theoretic Con-
cepts in Computer Science, WG 2004, volume 3353 of LNCS, pages 332–343.
Springer, 2005.

[2] U. Brandes and T. Erlebach, editors. Network Analysis, Methodological Founda-
tions, volume 3418 of LNCS Tutorial. Springer, 2005.

[3] U. Brandes, P. Kenis, and D. Wagner. Centrality in policy network drawings.
In J. Kratochvíl, editor, Proc. Graph Drawing, GD 1999, volume 1731 of LNCS,
pages 250–258. Springer, 1999.

[4] U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy network
drawings. IEEE Transactions on Visualization and Computer Graphics, 9(2):241–
253, 2003.

[5] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks.
Ars Combinatorica, 21(A):89–98, 1986.

[6] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(1):379–403, 1994.

[7] M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

[8] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-
completeness of a computer network layout problem. In Proc. IEEE International
Symposium on Circuits and Systems, pages 292–295, 1987.

[9] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline
crossing minimization. In J. Kratochvíl, editor, Proc. Graph Drawing, GD 1999,
volume 1731 of LNCS, pages 217–224. Springer, 1999.

Crossing Reduction with Intra-Level Edges 13

[10] H. C. Purchase. Which aesthetic has the greatest effect on human understanding?
In G. Di Battista, editor, Proc. Graph Drawing, GD 1997, volume 1353 of LNCS,
pages 248–261. Springer, 1997.

[11] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. IEEE/ACM International Conference on Computer Aided Design, ICCAD
1993, pages 42–47. IEEE Computer Society Press, 1993.

[12] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109–125, 1981.

[13] V. Valls, R. Marti, and P. Lino. A branch and bound algorithm for minimizing
the number of crossing arcs in bipartite graphs. Journal of Operational Research,
90:303–319, 1996.

[14] A. Yamaguchi and A. Sugimoto. An approximation algorithm for the two-
layered graph drawing problem. In T. Asano, H. Imai, T. Lee, S. Nakano, and
T. Tokuyama, editors, Proc. International Conference on Computing and Combi-
natorics, COCOON 1999, volume 1627 of LNCS, pages 81–91. Springer, 1999.

A Benchmark Results

The following figures provide benchmark results comparing the heuristics to re-
duce crossings: vertical sifting (CS with crossing matrix, VS without), horizontal
sifting (HS), mixed sifting (MS), and extended sifting (ES). All benchmarks were
run on a 2.6 GHz Pentium PC under the Java 2 platform 5.0 from Sun Microsys-
tems, Inc.

0

2

4

6

8

10

0 200 400 600 800 1000

R
un

ni
ng

tim
e

in
se

co
nd

s

Graph size |V1| = |V2|

ES
HS
MS
VS
CS

Fig. 6. Benchmark: running times

14 C. Bachmaier, M. Forster

0.60

0.65

0.70

0.75

0.80

0.85

0.90

200 400 600 800 1000

A
ft

er
vs

.b
ef

or
e

Graph size |V1| = |V2|

VS
HS
MS
ES

Fig. 7. Benchmark: total crossing numbers

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 3 4 5 6 7 8 9 10

A
ft

er
vs

.b
ef

or
e

Edge density (|E|+ |H|)/|V2|

VS
HS
MS
ES

Fig. 8. Benchmark: total crossing numbers

Crossing Reduction with Intra-Level Edges 15

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

200 400 600 800 1000

A
ft

er
vs

.b
ef

or
e

Graph size |V1| = |V2|

VS
HS
ES
MS

Fig. 9. Benchmark: numbers of crossings between vertical and horizontal edges

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

2 3 4 5 6 7 8 9 10

A
ft

er
vs

.b
ef

or
e

Edge density (|E|+ |H|)/|V2|

VS
HS
ES
MS

Fig. 10. Benchmark: numbers of crossings between vertical and horizontal edges

16 C. Bachmaier, M. Forster

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

200 400 600 800 1000

A
ft

er
vs

.b
ef

or
e

Graph size |V1| = |V2|

VS
MS
ES
HS

Fig. 11. Benchmark: numbers of crossings between horizontal edges

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

1 2 3 4 5

A
ft

er
vs

.b
ef

or
e

Edge density |H|/|V2|

VS
MS
ES
HS

Fig. 12. Benchmark: numbers of crossings between horizontal edges

Crossing Reduction with Intra-Level Edges 17

0.50

0.60

0.70

0.80

0.90

1.00

1.10

200 400 600 800 1000

A
ft

er
vs

.b
ef

or
e

Graph size |V1| = |V2|

MS
HS
ES
VS

Fig. 13. Benchmark: numbers of crossings between vertical edges

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

1 2 3 4 5

A
ft

er
vs

.b
ef

or
e

Edge density |E|/|V2|

MS
HS
ES
VS

Fig. 14. Benchmark: numbers of crossings between vertical edges

